Complying with 1907/2006/EEC Regulation of 18 December 2006 ("REACH Regulation"), COMMISSION REGULATION (EU) No 453/2010 and REGULATION (EC) No 1272/2008 (CLP)

Section 1. IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND OF THE COMPANY/ UNDERTAKING

1.1 Product identifier

Product name: PHTHALIC ANHYDRIDE Chemical name: Phthalic acid anhydride

Synonyms: 2-Benzofuran-1,3,-dione, Phthalic acid anhydride,

1,2-Benzene-dicarboxylic acid anhydride,

Phthalandione

Trade Name: PHTHALIC ANHYDRIDE

Chemical formula: $C_8H_4O_3$

Product type: Anhydride of organic aromatic dicarboxylic acid

CAS number: 85-44-9 **EC number:** 201-607-5

REACH registration no(s): 01-2119457017-41-0021

1.2 Relevant identified uses of the substance or mixture and uses advised

Intended Use: an intermediate and as a monomer for polymer formation

Identified Uses:

Production of Substance
Use as an Intermediate
Use as a Monomer for Polymer Formation.
Use in Formulation, Mixture, Refilling and Loading.
Use as a Laboratory Chemical.

Uses advised against: This product is not recommended for any industrial, professional or consumer use other than the Identified Uses above.

1.3 Details of the supplier of the safety data sheet

Company/undertaking identification

Supplier/Manufacturer: GADIV PETROCHEMICAL INDUSTRIES Ltd.

P.O.B 4 HAIFA

Tel: +972-4-8788020 Fax: +972-4-8788018 E-mail: Gadiv@bazan.co.il

E-mail address of person responsible for this SDS: telena@bazan.co.il

Only Representative: K.H. Klink Chemierohstoffe GmbH

Nauheimer Strasse 37

D-70372 Stuttgart / GERMANY

Tel.: 0049-711-55381-20 FAX: 0049-711-55381-30

http://www.khklink.de e-mail: qm@khklink.de

1.4 Emergency telephone number

Emergency telephone number (including hours of operation): +972-4-8788512

Section 2. HAZARDS IDENTIFICATION

2.1 Classification of the substance or mixture

Classification in accordance to Regulation (EC) No. 1272/2008 (CLP/GHS)

Physical / Chemical Hazards:

Not Classified

Health Hazards:

Acute toxicity – Oral, Category 4
Eye damage, Category 1
Respiratory sensitization, Category 1
Skin sensitization, Category 1
Skin irritation, Category 2
Specific target organ toxicity – inhalation, Category 3

Environmental Hazards:

Not Classified

Classification according to Directive 67/548/EEC (DSD) or 1999/45/EC

Xn - Harmful

R22: harmful if swallowed

R37/38: irritating to respiratory system and skin

R41: risk of serious damage to eyes

R42/43: may cause sensitization by inhalation and skin contact

2.2 Label elements

Labeling in accordance with Regulation 1272/2008 (CLP)

Hazard pictograms:

Signal word: Danger

Hazard statements:

H302: Harmful if swallowed.

H335: May cause respiratory irritation.

H315: Causes skin irritation.

H318: Causes serious eye damage.

H334: May cause allergy or asthma symptoms or breathing difficulties if inhaled.

H317: May cause an allergic skin reaction.

Precautionary Statements:

P232: Protect product from moisture

P261: Avoid breathing dust.

P264: Wash hands thoroughly after handling.

P280: Wear protective gloves/protective clothing/eye protection/face protection.

P301+P312: IF SWALLOWED: call a POISON CENTER or doctor / physician if you feel unwell.

P302+P352: IF ON SKIN: Wash with plenty of soap and water.

P305+P351+P338: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if

present and easy to do. Continue rinsing.

P337+P313: IF eyes irritation occurs: Get medical advice/attention.

P402+P233: Store in a well-ventilated place. Keep container tightly closed.

2.3 Other hazards

N/A

Labeling in accordance Directive 67/548/EEC (DSD) or 1999/45/EC

Xn - harmful

Risk phrases

R22: harmful if swallowed

R37/38: irritating to respiratory system and skin

R41: risk of serious damage to eyes

R42/43: may cause sensitization by inhalation and skin contact

2.3 Other hazard

Does not meet the criteria for PBT or vPvB.

Material can accumulate static charges which may cause an ignition.

May be irritating to the eyes, nose, throat, and lungs.

Section 3. COMPOSITION/INFORMATION ON INGREDIENTS

3.1 Substance

Ingredient name	CAS number		Concentration %	EU Classification	GHS Classification
PHTHALIC ANHYDRIDE	85-44-9	201-607-5	≥ 99.8%	Xn; R22 Xi; R41	Acute Tox. 4 H302

		Xi; R37/38	Eye damage 1
		R42/43	H318
REACH registration no.			Skin Irrit. 2
01-2119457017-41-			H315
0021			STOT SE 3
			H335 Resp. Sens.
			1 H334
			Skin Sens. 1
			H317

Additional Information:

There are no additional ingredients present which, within the current knowledge of the supplier and in the concentrations applicable, are classified as hazardous to health or the environment and hence require reporting in this section.

Occupational exposure limits, if available, are listed in section 8. See section 16 for the full text of the H-statements and R-phrases declared above.

Section 4. FIRST AID MEASURES

4.1 Product-specific hazards

Causes eye damage. Causes skin irritation / sensitization. May cause respiratory sensitization.

4.2 General advice

Take care to self-protect by avoiding becoming contaminated.

Seek medical assistance - show the safety data sheet or label if possible.

4.3 Description of first aid measures

Inhalation:

Move exposed person to fresh air. If it is suspected that fumes are still present, the rescuer should wear an appropriate mask or self-contained breathing apparatus. Keep person warm and at rest. If not breathing, if breathing is irregular or if respiratory arrest occurs, provide artificial respiration or oxygen by trained personnel. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. Get medical attention. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such as a collar, tie, belt or waistband. In the event of any complaints or symptoms, avoid further exposure.

Ingestion:

Wash out mouth with water. Move exposed person to fresh air. Keep person warm and at rest. If material has been swallowed and the exposed person is conscious, give small quantities of water to drink. Stop if the exposed person feels sick as vomiting may be dangerous. Do not induce vomiting unless directed to do so by medical personnel. If vomiting occurs, the head should be kept low so that vomit does not enter the lungs. Get medical attention. Never give anything by mouth to an unconscious person. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such as a collar, tie, belt or waistband.

Skin contact:

Solid Material: Flush contaminated skin with plenty of water. Remove contaminated clothing and shoes. Continue to rinse for at least 10 minutes. Get medical attention. In the event of any complaints or symptoms, avoid further exposure. Wash clothing before reuse. Clean shoes thoroughly before reuse.

Material in Liquid State:

Wash skin immediately with plenty of water and soap. Call a physician. CONTACT WITH THE HOT MELT: Cooling immediately with plenty of water. Do not remove product crusts which may have formed neither forcibly nor by applying any solvents to the skin involved. In order to obtain medical care for possible burns and for a smooth cleansing of the skin, seek medical advice immediately.

Eye contact:

Solid Material:

Get medical attention immediately. Immediately flush eyes with plenty of water, occasionally lifting the upper and lower eyelids. Check for and remove any contact lenses. Continue to rinse for at least 10 minutes. Chemical burns must be treated promptly by a physician.

Material in Liquid State:

Immediately flush eyes with running water for at least 15 minutes, keeping eyelids open. Seek immediate medical attention.

4.4 Advice to physician

Causes eye damage. Causes skin irritation / sensitization. Material may cause respiratory sensitization.

No specific antidote; medical staff contacts Poisons Information Center. All treatments should be based on observed signs and symptoms of distress in the patient. Consideration should be given to the possibility that overexposure to materials other than this product may have occurred.

Section 5: FIRE-FIGHTING MEASURES

5.1 Extinguishing media

Suitable extinguishing media:

Use an extinguishing agent suitable for the surrounding fire. Examples: water spray, water fog or foam. For small fire use dry powder or carbon dioxide (CO₂) extinguisher, dry sand or fire fighting foam.

Unsuitable extinguishing media:

None are known.

5.2 Hazardous combustion products

Decomposition products may include the following materials: carbon oxides (carbon monoxide and carbon dioxide), smoke and soot.

5.3 Special exposure hazards during fire fighting

No specific fire or explosion hazard.

Promptly isolate the scene by removing all persons from the vicinity of the incident if there is a fire. No action shall be taken involving any personal risk or without suitable training.

5.4 Special protective measures for firefighters

Fire-fighters should wear appropriate protective equipment and self contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode.

Other: All combustion residues and contaminated water from fire-fighting should be disposed of according to local regulations

Section 6: ACCIDENTAL RELEASE MEASURES

6.1 Prevention of secondary risk

None.

6.2 Personal precautions

No action shall be taken involving any personal risk or without suitable training. Keep unnecessary and unprotected personnel from entering. Do not touch or walk through spilt material. Provide adequate ventilation. Put on appropriate personal protective equipment (see section 8).

6.3 Environmental precautions

Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers. Inform the relevant authorities if the product has caused environmental pollution (sewers, waterways, soil or air). **Large spill:** Move containers from spill area. Prevent entry into sewers, water courses, basements or confined areas. Vacuum or sweep up material and place in a designated, labeled waste container. Dispose of via a licensed waste disposal contractor.

Small spill: Move containers from spill area. Vacuum or sweep up material and place in a designated, labeled waste container. Dispose of via a licensed waste disposal contractor.

6.4 Reference to other sections

See Section 1 for emergency contact information.

See Section 8 for information on appropriate personal protective equipment.

See Section 13 for additional waste treatment information

Section 7: HANDLING AND STORAGE

7.1 Advice on safe handling

Prevention of user exposure:

Put on appropriate personal protective equipment.

Eating, drinking and smoking should be prohibited in areas where this material is handled, stored and processed.

Persons with a history of skin sensitization problems or asthma, allergies or chronic or recurrent respiratory disease should not be employed in any process in which this product is used.

Do not get in eyes or on skin or clothing.

Do not ingest.

Use only with adequate ventilation.

Wear appropriate respirator when ventilation is inadequate.

Prevention of fire and explosion:

Avoid contact with heat and ignition sources and with strong oxidizing agents.

Precautions while moving the product:

Keep in the original container or an approved alternative made from a compatible material, kept tightly closed when not in use.

Empty containers retain product residue and can be hazardous.

Hygiene Measures:

Workers should wash hands and face before eating, drinking and smoking.

7.2 Conditions for safe storage, including any incompatibilities

Technical measures:

Store in accordance with local regulations.

Store in original container protected from direct sunlight in a dry, cool and well ventilated area, away from incompatible materials (see section 10) and food and drink.

Use appropriate containment to avoid environmental contamination.

Storage precautions:

Keep container tightly closed and sealed until ready for use.

Containers that have been opened must be carefully resealed and kept upright to prevent leakage.

Do not store in unlabelled containers.

Eating, drinking and smoking should be prohibited in areas where this material is handled, stored and processed.

Remarks: Avoid all possible sources of ignition (spark or flame).

Take precautionary measures against electrostatic discharges.

Incompatible products:

Avoid contact with strong oxidizing agents, amines and strong bases.

Packaging materials:

Recommended: Use original container.

7.3 Specific end use(s):

Section 8: EXPOSURE CONTROL / PERSONAL PROTECTION

8.1 Risk management measures

Occupational Exposure Controls:

Technical measures: Use only with adequate ventilation. If user operations generate dust, fumes, gas, vapour or mist, use process enclosures, local exhaust ventilation or other engineering controls to keep worker exposure to airborne contaminants below any recommended or statutory limits.

Occupational Exposure Limits: Refer to the CSR.

Derived No Effect Level (DNEL)

Exposure pattern	Route	Workers	General population
Long-term – systemic effects	Oral	N/A	5 mg/kg bw/day
Long-term – systemic	Dermal	10 mg/kg bw/day	5 mg/kg bw/day

effects			
Long-term – systemic	Inhalation	35.2 mg/m³	8.6 mg/m ³
effects			

Predicted No Effect Concentration (PNEC)

PNEC freshwater	1 mg/l
PNEC intermittent	5.6 mg/l
PNEC marine water	0.1 mg/l
PNEC sediment freshwater	3.80 mg/kg wwt
PNEC sediment marine water	0.38 mg/kg wwt
PNEC sewage treatment plant	10 mg/l

8.2 Exposure controls

Engineering Controls

Recommended monitoring procedures: If this product contains ingredients with exposure limits, personal, workplace atmosphere or biological monitoring may be required to determine the effectiveness of the ventilation or other control measures and/or the necessity to use respiratory protective equipment. Reference should be made to European Standard EN 689 for methods for the assessment of exposure by inhalation to chemical agents and national guidance documents for methods for the determination of hazardous substances.

Person Protective measures

<u>Respiratory protection:</u> Use a properly fitted, air-purifying or air-fed respirator complying with an approved standard if a risk assessment indicates this is necessary. Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe working limits of the selected respirator.

Recommended: In case of dust formation particle filter P2.

Eye protection: Safety eyewear complying with an approved standard should be used when a risk assessment indicates this is necessary to avoid exposure to liquid splashes, mists, gases or dusts. Recommended: Tightly fitting safety goggles.

Skin protection

Hand protection:

Solid Material: Chemical-resistant, impervious gloves complying with an approved standard should be worn at all times when handling chemical products if a risk assessment indicates this is necessary. After contamination with product change the gloves immediately and dispose of them according to relevant national and local regulations.

<1 hour (breakthrough time): use Nitrile rubber – NBR gloves.

Liquid (Molten) Material: Chemical-resistant, impervious gloves or gauntlets complying with an approved standard should be worn at all times when handling chemical products if a risk assessment indicates this is necessary. After contamination with product change the gloves immediately and dispose of them according to relevant national and local regulations.

<1 hour (breakthrough time): use PVC or Rubber gloves.

<u>Skin and body (other than the hands):</u> Personal protective equipment for the body should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product. Recommended: chemical-resistant protective suit.

<u>Hygienic measures:</u> Wash hands, forearms and face thoroughly after handling chemical products, before eating, smoking and using the lavatory and at the end of the working period. Appropriate techniques should be used to remove potentially contaminated clothing. Wash contaminated clothing before re-using. Ensure that eyewash stations and safety showers are close to the workstation location.

Environmental exposure controls:

Technical measures: Emissions from ventilation or work process equipment should be checked to ensure they comply with the requirements of environmental protection legislation. In some cases, fume scrubbers, filters or engineering modifications to the process equipment may be necessary to reduce emissions to acceptable levels.

Section 9: PHYSICAL AND CHEMICAL PROPERTIES

9.1 Information on basic physical and chemical properties

Molecular weight (average): 148

Appearance:Solid, whiteOdour:Not availableOdour threshold:Not availablepH:Not availableMelting point:131.6 °C

Boiling range: 284 °C at 1013 hPa

Flash point: 152 °C
Evaporation rate: solid material

Flammability (solid, gas):

Vapor pressure:

Non flammable solid
0.0006 hPa at 26.6°C

Vapor density (air=1):solid materialAuto-ignition temperature:580 °CDecomposition temperature:N/AOxidizing properties:N/AExplosive hazard:N/A

Water Solubility: 6000 - 16400 mg/l (substance is

hydrolytically unstable at pH 4, 7 and 9).

Partition coefficient Octanol/Water: 1.6 at 20°C

Relative density: 1.527 g/cm³ at 20°C

Viscosity: 1.19 mPa*S at 132°C , 1.125 mPa*s at

155°C

Surface tension: solid material

Other information:

Granulometry: N/A

Dissociation constants (of Phthalic acid): pKa1 = 2.97, pKa2 = 5.43 at 35°C.

Section 10: STABILITY AND REACTIVITY

The product is stable at normal storage, handling and use temperatures.

10.2 Conditions to avoid

Heat, sparks, ignition points, flames, static electricity.

10.3 Materials to avoid

Keep away from water, alkalis, alcohols, oxygen, oxidizing agents, acids, nitrite, Metallic oxides. The substance is air sensitive.

10.4 Hazardous Decomposition products

Under normal conditions of storage and use, hazardous decomposition products should not be produced.

Incomplete combustion and thermolysis produce potentially toxic gases such as: carbon monoxide, carbon dioxide and soot.

10.5 Hazard polymerization:

N/A

Section 11: TOXICOLOGICAL INFORMATION

11.1 Information on toxicological effects

Acute toxicity by oral route, inhalation and dermal route:

Phthalic anhydride is classified under Annex I of Dir 67/548/EEC as Xi, R22 – Harmful if swallowed, with corresponding classification under CLP of H302 – Harmful if swallowed.

Product / ingredient	Test	Species	Dose
name			
Phthalic Anhydride	LD50, Oral	Rat (male)	1 530 mg/kg bw
Fillianc Annyunue	1	` '	1,530 mg/kg bw
	LC50, discriminating	Rat	3,160 mg/m ³ air
	dose, Inhalation	(male/female)	
	LD50, discriminating	Rabbit	
	dose, Dermal		3,160 mg/kg bw

Skin irritation / corrosion: Irritating.

Eye irritation: Irritating.

Skin sensitization: Sensitizing.

Respiratory sensitization: Sensitizing.

Repeated dose toxicity - Oral route: NOAEL: 500 mg/kg body weight/day.

CMR Effects:

Mutagenicity: Genetic toxicity: Negative.

Carcinogenicity: No evidence of carcinogenicity was seen.

Oral route - NOAEL: 1000 mg/kg body weight/day.

Reproductive toxicity: No evidence of toxicity to reproductive organs. NOAEL: 1,000 mg/kg body weight /

day.

Developmental toxicity: Phthalic anhydride is not a developmental toxicant. NOAEL: 1,700 mg/kg bw/day.

<u>Toxicokinetics:</u> Upon exposure to Phthalic anhydride, the material is easily hydrolyzed to Phthalic acid, which is secreted. No evidence of conjugate formation. The half-life of Phthalic acid was not determined.

<u>Chronic/Other Effects:</u> No relevant additional data is available.

Section 12: ECOLOGICAL INFORMATION

General Remark on Ecotoxicity Testing: Phthalic anhydride reacts rapidly with water, forming phthalic acid. Since the half-life of phthalic anhydride in water is in the range of seconds to minutes, virtually tests with phthalic anhydride in aquatic solutions measure effects of phthalic acid rather than phthalic anhydride. Consequently, phthalic acid can also be used as the test substance to evaluate the aquatic effects of phthalic anhydride.

Substance name	Toxicity to fish	Toxicity to invertebrates	Toxicity to algae/ terrestrial plants	Toxicity to other aquatic organisms	Other data (birds, bees, plants etc.)
Phthalic Anhydride	LC ₅₀ / 7 days: 560 mg/l (<i>Danio rerio</i>)	EC ₅₀ / 48H: >640 mg/l (<i>Daphnia</i> <i>magna</i>)	EC ₅₀ /72H: >100 mg/l (Desmodesmus subspiculatus)	Amphibian: LC0/24H: ≥24 mg/l (<i>Bufo bufo</i>	N/A
	Long term result: NOEC 10 mg/l (Oncorhynchus mykiss)	Long term result: EC ₅₀ / 21 days: 10 mg/l (based on reproduction, may be a pH effect). (Daphnia magna)	EC ₅₀ / 3 days: 731 mg/l at pH=2.80 (based on fruit germination). (<i>Lactuca sativa</i>)	japonicus)	

Activated sludge inhibition of oxygen consumption testing (ISO 8192). EC₅₀ (3hr): > 1000 mg/l

Mobility in soil: Adsorption/desorption – The substance does not adsorb to sediments and suspended solids, as the experimental Koc of 31 suggests that phthalic acid has a high mobility in soil.

Persistence and Degradability

Biotic

Phthalic anhydride and the hydrolysis product phthalic acid are readily biodegradable.

Abiotic

Photodegradation in air - An atmospheric half-life of 21.4 days for phthalic anhydride and 13 days for phthalic acid is estimated for indirect photodegradation.

Degradation products: not measured.

Photodegradation in water - In the hydrosphere, phthalic anhydrid is transformed photochemically under anaerobic conditions showing polymerization to polyphenyl. The half-life is in the range from 3.9 - 9.6 hours. For photo-oxidation in sea water a half-life of 0.93 hours is obtained.

Hydrolysis - Phthalic anhydride hydrolyses by 50 % within 30.5 seconds in the presence of water at pH 7 and 25°C, forming phthalic acid.

Bioaccumulative potential: Phthalic anhydride has low potential to bioaccumulate based on a log Kow of 1.6 (BCF is calculated to be 3.4). The hydrolysis product, phthalic acid, has a calculated BCF of 3.16, and is also has a low potential to bioaccumulate.

Secondary poisoning: Risk characterization is not required, because the substance is readily biodegradable and risk of bioaccumulation is low.

Result of PBT/vPvB assessment (if CSR is required): Phthalic anhydride and its hydrolysis product Phthalic acid are neither a PBT nor a vPvB substance.

Other adverse effects: N/A

Section 13: DISPOSAL CONSIDERATIONS

13.1 Methods of disposal

Examine possibilities for re-utilization. Product residues and un-cleaned empty containers should be packaged, sealed, labeled, and disposed of or recycled according to relevant national and local regulations. Where large quantities are concerned, consult the supplier. When un-cleaned empty containers are passed on, the recipient must be warned of any possible hazard that may be caused by residues. For disposal within the EC, the appropriate code according to the European Waste List (EWL) should be used. It is among the tasks of the polluter to assign the waste to waste codes specific to industrial sectors and processes according to the European Waste List (EWL).

13.2 Hazardous waste

The classification of the product may meet the criteria for a hazardous waste.

Section 14: TRANSPORT INFORMATION

14.1 Land Transportation (ADR/RID) / Inland Waterway Transport (AND(R))

UN number: Not regulated as a hazardous material

Proper shipping name: PHTHALIC ANHYDRIDE

14.2 Marine Transport (IMDG)

UN number: Not regulated as a hazardous material

Proper shipping name: PHTHALIC ANHYDRIDE

Environmental Hazard: No

14.3 Air Transport (ICAO/IATA)

UN number: Not regulated as a hazardous material

Proper shipping name: PHTHALIC ANHYDRIDE

14.4 If shipped in molten form:

Land Transportation (ADR/RID) / Inland Waterway Transport (AND(R)) / Marine Transport (IMDG)

UN number: 3256

Proper shipping name: ELEVATED TEMPERATURE LIQUID, N.O.S

Chemical name: PHTHALIC ANHYDRIDE

Hazard class: 3 (flammable liquid)

Packing group: III

ADR/RID-Labels: 3

Marine Transport (IMDG)

UN number: 3256

Proper shipping name: ELEVATED TEMPERATURE LIQUID, Flammable N.O.S (Phthalic anhydride)

Hazard class: 3

Packing group: III

EmS number: F-E, S-D

Labels: 3

Environmental Hazard: No

Air Transport (ICAO/IATA)

Not allowed.

National Fire Protection Association Hazard Ratings- NFPA (R):

Health Hazard - 2

Flammability - 1

Reactivity - 1

Section 15: REGULATORY INFORMATION

15.1 Safety, health and environmental regulations/legislation specific for the substance or mixture

EU Directives 67/548/EEC and 1999/45/EC (including amendments) and take into account the intended product use.

EU Regulation (EC) No.1907/2006 (REACH)

EU Regulation (EC) No 1272/2008 (CLP)

COMMISSION REGULATION (EU) No 453/2010

15.2 Chemical safety assessment

In accordance with REACH article 14, a Chemical Safety Assessment has been carried out for this substance.

Section 16: OTHER INFORMATION

Full text of R-phrases referred to in sections 2 and 3:

R22 - Harmful if swallowed

R37/38 - Irritating to respiratory system and skin

R41 - Risk of serious damage to eyes

R42/43 - May cause sensitization by inhalation and skin contact

Safety phrases:

S02 - Keep out of the reach of children.

S23 - Do not breathe vapour / spray

S22 - Do not breathe dust.

S24/25 - Avoid contact with skin and eyes

S26 - In case of contact with eyes, rinse immediately with plenty of water and seek medical advice.

S37/39 - Wear suitable gloves and eye/face protection

S46 - if swallowed, seek medical advice immediately and show this container or label

Full text of Hazards Statements referred to in sections 2 and 3:

H302 - Harmful if swallowed.

H335 - May cause respiratory irritation.

H315 - Causes skin irritation.

H318 - Causes serious eye damage.

H334 - May cause allergy or asthma symptoms or breathing difficulties if inhaled.

H317 - May cause an allergic skin reaction.

Precautionary Statements:

P232 - Protect product from moisture

P261 - Avoid breathing dust.

P264 - Wash hands thoroughly after handling.

P280 - Wear protective gloves/protective clothing/eye protection/face protection.

P301+P312 - IF SWALLOWED: call a POISON CENTER or doctor / physician if you feel unwell.

P302+P352 - IF ON SKIN: Wash with plenty of soap and water.

P305+P351+P338 - IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

P337+P313 - IF eyes irritation occurs: Get medical advice/attention.

P402+P233 - Store in a well-ventilated place. Keep container tightly closed.

Training advice: Before using/handling the product one must read carefully present MSDS.

Recommended restriction: N/A

Key Legend Information:

ACGIH- American Conference of Governmental Industrial Hygienists

OSHA- Occupational Safety and Health Administration

NTP- National Toxicology program

IARC- International Agency for Research on Cancer

ND- Not Determined

N/A- Not available

R-phrases- Risk phrases

S-phrases-Safety phrases

H-statements - Hazard statements

P-statements - Precautionary statements

UVCB - Substances of Unknown or Variable composition, Complex reaction products or Biological materials

Date of issue: 01/05//2013

Version no. 3

To the best of our knowledge the information contained herein is accurate. However, neither the above named supplier nor any of its subsidiaries assumes any liability whatsoever for the accuracy or completeness of the information contained herein. Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist.

EXPOSURE SCENARIO

Production of phthalic anhydride - Industrial

Process Categories:

PROC01: Use in closed process, no likelihood of exposure

PROC02: Use in closed, continuous process with occasional controlled exposure

PROC08b: Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at dedicated facilities

PROC 9: Transfer of substance or preparation into small containers (dedicated filling line, including weighing)

Environmental Release Category:

ERC01: Production of chemicals

Risk management measures for industrial site

Information type	Data field	Explanation			
Containment and local exhaust ventilation					
Containment plus good work practice required	Effectiveness: Unknown	Production and handling of molten phthalic anhydride involves high temperatures, and high integrity contained systems with little or no potential for exposure. Pipelines and vessels are sealed and insulated. Workers involved in production work in a control room, with no direct contact to the installations housing the material.			
Local exhaust ventilation is not required	Effectiveness : Unknown	Production and handling of molten phthalic anhydride involves high temperatures, and high integrity			

Information type	Data field	Explanation
		contained systems with little or no potential for exposure. Pipelines and vessels are sealed and insulated. Workers involved in production work in a control room, with no direct contact to the installations housing the material.
Personal protective equipment (PPE		
Type of PPE (gloves, respirator, face-shield etc)	Effectiveness: Unknown	Production and handling of molten phthalic anhydride involves high temperatures, and high integrity contained systems with little or no potential for exposure. Pipelines and vessels are sealed and insulated. Workers involved in production work in a control room, with no direct contact to the installations housing the material. Workers involved in sampling and transfer of materials to road tankers are trained in the procedures and protective equipment is intended to cope with the worst case scenario, in order to minimise exposure and risks.
Other risk management measures re	elated to workers	
No further risk management measure	es required	
Risk management measures related	to environmental emissions for	rom industrial sites
Onsite pre-treatment of waste water	Chemical pre-treatment or onsite STP.	Waste waters are generally treated on site by chemical and/or biological methods before release to the municipal STP or to the environment.
Resulting fraction of initially applied amount in waste water released from site to the external sewage system	Varies depending on system. Estimated concentration in the STP effluent is between 2 and	Worst case measured production releases are considered below and have been determined to be safe for the environment.

Information type	Data field	Explanation
	3mg/L based on worst case measured emissions.	
Air emission abatement	Effectiveness: Adequate measures in place	Exhaust gases absorbed in wet scrubbers or removed by incineration. Worst case measured emission values are considered below and are found to be safe for the environment. The emission to air is therefore considered to be negligible.
Resulting fraction of applied	43.2 kg/d	
amount in waste gas released to environment		Worst case measured values before scrubbing. This value has been inputted into the environmental risk assessment and is determined to be safe for the environment. As such the actual release levels after scrubbing or incineration will pose no threat to the environment.
Onsite waste treatment	Effectiveness: 87.3%	Simpletreat within EUSES assumes 87.3% removal in the STP system. This is considered to be conservative.
Effluent (of the waste water treatment plant) discharge rate	2000 m ³ /d	Default: 2.000 m ³ /d
Recovery of sludge for agriculture or horticulture	No	All sludge is collected and incinerated or sent to landfill.
Resulting fraction of initially applied amount in waste water released from site	12.6%	Simpletreat within EUSES assumes 12.6% emission in effluent from the STP system. This is considered to be conservative.

Exposure estimation

Workers exposure

Acute/Short term exposure

Not relevant based on the hazard assessment and therefore will not be assessed.

Long-term exposure

Tables 66 and 67 show the estimated exposure concentration to workers. The exposure estimates were generated using the ECETOC TRA model using the parameters listed below:

Table 1: Parameters used in ECETOC modelling

	Value used	Explanation/source of data
Molecular weight	148.1156 g/mol	
Vapour Pressure	0.06 Pa	
Water solubility	11200 mg/L	
Partition coefficient octanol- water	logKow = 1.6	
Biodegradability	Readily biodegradable	
Is the substance a solid?	No/Yes	No in case of molten. Yes in case of flake
Dustiness during process	Low	Only in the case of solid
Duration of activity	>4 hours (default)	
Use of ventilation	Indoors without LEV (for PROC 1). Indoors with LEV for other PROCs	

Table 2: Long-term exposure concentrations to workers from molten liquid

	PROC	Estimated Exposure Concentrations	
Routes of exposure		value	unit
Dermal exposure	PROC 1	0.343	mg/kg/day
	PROC 2	0.137	mg/kg/day
·	PROC 8b	0.686	mg/kg/day
	PROC 9	0.686	mg/kg/day
Inhalation exposure	PROC 1	0.617	mg/m3
·	PROC 2	0.617	mg/m3

	PROC	Estimated Exposure Concentrations	
Routes of exposure		value	unit
	PROC 8b	0.617	mg/m3
	PROC 9	0.617	mg/m3

Table 3: Long-term exposure concentrations to workers from flakes

	PROC	Estimated Exposure Concentrations	
Routes of exposure		value	unit
	PROC 1	0.343	mg/kg/day
Dermal exposure	PROC 2	0.137	mg/kg/day
·	PROC 8b	0.686	mg/kg/day
	PROC 9	0.686	mg/kg/day
	PROC 1	0.01	mg/m3
Inhalation exposure	PROC 2	0.001	mg/m3
	PROC 8b	0.005	mg/m3
	PROC 9	0.01	mg/m3

Consumer exposure

Consumers are not exposed to phthalic anhydride during the production process of ES1.

Use of phthalic anhydride as an intermediate - Industrial

Sectors of Use:

SU3: Industrial uses: Uses of substances as such or in preparation at industrial sites SU8: Manufacture of bulk, large scale chemicals (including petroleum products)

SU9: Manufacture of fine chemicals

Produce Category:

PC19: Intermediate

Process Categories:

PROC01: Use in closed process, no likelihood of exposure

PROC02: Use in closed, continuous process with occasional controlled exposure

PROC03: Use in closed batch process (synthesis or formulation)

PROC04: Use in batch and other process (synthesis) where opportunity for exposure arises

PROC08B: Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at

dedicated facilities

PROC9: Transfer of substance or preparation into small containers (dedicated filling line, including weighing)

Environmental Release Category:

ERC6A: Industrial use resulting in manufacture of another substance (use of intermediates)

Operational conditions related to frequency, duration and amount of use

Duration, frequency and amounts:

Information type	Data field	Explanation
Use amount per worker [workplace] per day	No data	Worker exposure considered to be negligible for the molten form as it remains enclosed due to the high temperatures. Worker exposure considered to be negligible for the flake form as flakes are produced in closed systems
Duration per day at workplace [for	8hr/d	Standard number of hours in one

Information type	Data field	Explanation
one worker]		work day
Frequency at workplace [for one worker]	220 d/year	Standard number of work days / year
Other determinants related to duration, frequency and amount of use	Intermittent contact is expected	These tasks rarely take a full 8hr / day so worst case is assumed.
Annual amount used per site	579,500 t/y	Worst case on-site tonnage
Emission days per site	360 d/y	Estimate number of emission days, based on continuous production

Remarks or additional information:

Note that there is no professional or consumer use of phthalic anhydride for this exposure scenario. Note also that phthalic anhydride is not incorporated in any article for this exposure scenario.

Operational conditions related to product characteristics

Product Characteristic

Information type	Data field	Explanation
Type of product the information relates to	Substance as such	The product can be sold in the form of flakes or alternatively in liquid form in a sealed tank container.
Physical state of product	Flakes or liquid melt	In the EU, approximately 5% of production is in the flaked form.
For solids: Flaked form	Low dustiness	Considered low due to flake size.
Concentration of substance in product	>99.8 %	

Remarks or additional information:

Handling of molten phthalic anhydride involves high temperatures, and high integrity contained systems with little or no potential for exposure. Pipelines and vessels are sealed and insulated. Workers involved in use of phthalic anhydride as an intermediate work in a control room, with no direct contact to the installations housing the material. Workers involved in sampling and transfer of materials to road tankers are trained in the procedures and protective equipment is intended to cope with the worst case scenario, in order to minimise exposure and risks. Workers handling the flaked product need to employ various Risk Management Measures to reduce exposures. These include enclosed machinery, such that the bags containing the flaked material are emptied under enclosed conditions, with LEV preventing emission of dust; where the potential for dusts cannot be fully avoided, workers will need effective face masks with filters and face/eye/skin protection.

Other operational conditions of use

Respiration volume and skin contact under conditions of worker uses

Information type	Data field	Explanation
Respiration volume under	10m ³ /d	Default value for a worker breathing
conditions of use	10111 / 4	for a 8hrs work day in RIP 3.2
Skin contact area with the	480cm ²	Assumes 2 hands and face only
substance under conditions of use	4800111	(ECETOC TRA tool)

Conditions leading to dilution of initial release related to human health

Information type	Data field	Explanation
Room size and ventilation rate	NA	Not relevant as workers involved in production work in a control room, with no direct contact to the installations housing the material

Conditions leading to dilution of initial release related to environment

Information type	Data field	Explanation
Discharge volume of sewage treatment plant	2000 m ³ /d	EUSES default value for standard local STP
Available river water volume to receive the emissions from a site	20,000 m ³ /d	Standard ERC flow rate leading to a 10 fold dilution in receiving waters.

Risk management measures for industrial site

Information type	Data field	Explanation		
Containment and local exhaust ventil	Containment and local exhaust ventilation			
Containment plus good work practice required	Effectiveness: Unknown	Handling of molten phthalic anhydride involves high temperatures, and high integrity contained systems with little or no potential for exposure. Pipelines and vessels are sealed and insulated. Workers involved in production work in a control room, with no direct contact to the installations housing the material.		
Local exhaust ventilation is not required is not required to demonstrate a safe use but may be present depending on the design of the premises	Effectiveness : Unknown	Handling of molten phthalic anhydride involves high temperatures, and high integrity contained systems with little or no potential for exposure. Pipelines and vessels are sealed and insulated. Workers involved in production work in a control room, with no direct contact to the installations housing the material.		

Information type	Data field	Explanation
Personal protective equipment (PPE)		
Type of PPE (gloves, respirator, face-shield etc)	Effectiveness: Unknown	Handling of molten phthalic anhydride involves high temperatures, and high integrity contained systems with little or no potential for exposure. Pipelines and vessels are sealed and insulated. Workers involved in production work in a control room, with no direct contact to the installations housing the material. Workers involved in sampling and transfer of materials to road tankers are trained in the procedures and protective equipment is intended to cope with the worst case scenario, in order to minimise exposure and risks.
Other risk management measures re	ated to workers	
No further risk management measure	es required	
Risk management measures related t	o environmental emissions from	n industrial sites
Onsite pre-treatment of waste water	Chemical pre-treatment or onsite STP.	Waste waters are generally treated on site by chemical and/or biological methods before release to the municipal STP or to the environment.
Resulting fraction of initially applied amount in waste water released from site to the external sewage system	Varies depending on system. Estimated concentration in the STP effluent is between 2 and 3mg/L based on worst case measured emissions.	Worst case measured releases for the phthalic anhydride life cycle are considered below and have been determined to be safe for the environment.
Air emission abatement	Effectiveness: Adequate measures in place	Exhaust gases absorbed in wet scrubbers or removed by incineration. Worst case measured emission values are considered below and are found to be safe for the environment. The emission to air is therefore considered to be negligible.
Resulting fraction of applied amount in waste gas released to environment	43.2 kg/d	Worst case measured values before scrubbing. This value has been inputted into the environmental risk assessment and is determined to be safe for the environment. As such the actual

Information type	Data field	Explanation
		release levels after scrubbing or
		incineration will pose no threat to
		the environment.
Onsite waste treatment	Effectiveness: 87.3%	Simpletreat within EUSES assumes
		87.3% removal in the STP system.
		This is considered to be
		conservative.
Effluent (of the waste water	2000 m ³ /d	Default: 2.000 m ³ /d
treatment plant) discharge rate		
Recovery of sludge for agriculture	None	All sludge is collected and
or horticulture		incinerated or sent to landfill.
Resulting fraction of initially applied	12.6%	Simpletreat within EUSES assumes
amount in waste water released		12.6% emission in effluent from
from site		the STP system. This is considered
		to be overestimated.

Waste related measures

Table 4: Fractions of substance in waste and waste management measures

Information type	Data field	Explanation
Amount of substances in waste		
water resulting from identified uses		Based on worst case emission
covered in the exposure scenario	40 kg/d	to waste waters identified.
Amount of substances in waste		
resulting from service life of articles	Not applicable	
Type of waste, suitable waste codes	Suitable EWC code(s)	
Type of external treatment aiming		
at recycling or recovery of		
substances	None	
Type of external treatment aiming		
at final disposal of the waste	Incineration or landfill.	
Fraction of substance released into		
the environment via air from waste		
handling	Not applicable	
Fraction of substance released into		
the environment via waste water		
from waste handling	Not applicable	
Fraction of substance disposed of		
as secondary waste	Not applicable	

Exposure estimation

Workers exposure

Note that there is no EU Workplace Exposure Limit for phthalic anhydride, nor has the German DFG recommended a MAC. Switzerland has established a shift value of 1 mg/m³ and a short-time (15 minutes)

value of 1 mg/m³. France has an 8-hour VLEP of 10 mg/Nm³. The present CSR recommends a long-term inhalation DNEL for workers of 32.2 mg/m³ and a dermal DNEL of 10 mg/kg bw/day.

The manufacturers have stated that workers involved in the production of phthalic anhydride are protected by the nature of the installations; use of strictly controlled procedures and sealed pipelines and reactors. Workers perform the same activities throughout the shift. As such, there are no peak exposure points other than connecting and disconnecting tankers, and sampling. Protective clothing and respiratory equipment are required when connecting/disconnecting tankers, when taking samples and (in combination with a fume cupboard) when analysing samples. It should be noted that the values given below quote the highest data presented by the several members of the Consortium, and therefore represent a worst-case. Measured data (external to respiratory equipment) from filling tankers with molten phthalic anhydride over 2-7 hour periods showed a recorded mean of 4.19mg/Nm³. Workers wear respiratory protection when loading and unloading tankers which will significantly lessen the actual exposure levels. It is noted that readings taken in the open air are generally not suitable as a basis for safety measures.

Measured data (external to respiratory equipment) from taking samples (maximum daily duration 15 minutes) as 0.78mg/Nm³.

Measured data from loading and sampling of solid (flaked) phthalic anhydride are stated as to be as high as 1.02 mg/Nm³ for a 7 hour working day,

Measured data from laboratory analysis of molten and flaked phthalic anhydride were up to 0.59 mg/Nm³ and 1.57 mg/Nm³ respectively.

Acute/Short term exposure

Not relevant based on the hazard assessment and therefore will not be assessed.

Long-term exposure

Tables 66 and 67 show the estimated exposure concentration to workers. The exposure estimates were generated using the ECETOC TRA model using the parameters listed below:

Table 5: Parameters used in ECETOC modelling

	Value used	Explanation/source of data
Molecular weight	148.1156 g/mol	
Vapour Pressure	0.06 Pa	
Water solubility	11200 mg/L	
Partition coefficient octanol-	logKow = 1.6	
water		
Biodegradability	Readily biodegradable	
Is the substance a solid?	No/Yes	No in case of molten. Yes in case
		of flake
Dustiness during process	Low	Only in the case of solid
Duration of activity	>4 hours (default)	
Use of ventilation	Indoors without LEV (for PROC 1).	
	Indoors with LEV for other PROCs	

Table 6: Long-term exposure concentrations to workers from molten liquid

	PROC	Estimated Exposure Concentration	
Routes of exposure		value	unit
	PROC 1	0.343	mg/kg/day
Dermal exposure	PROC 2	0.137	mg/kg/day
	PROC 8b	0.686	mg/kg/day

	PROC	Estimated Exposure Concentrations		
Routes of exposure		value	unit	
	PROC 9	0.686	mg/kg/day	
	PROC 1	0.617	mg/m3	
Inhalation exposure	PROC 2	0.617	mg/m3	
	PROC 8b	0.617	mg/m3	
	PROC 9	0.617	mg/m3	

Table 7: Long-term exposure concentrations to workers from flakes

	PROC	Estimated Exposure Concentrations	
Routes of exposure		value	unit
	PROC 1	0.343	mg/kg/day
Dermal exposure	PROC 2	0.137	mg/kg/day
	PROC 8b	0.686	mg/kg/day
	PROC 9	0.686	mg/kg/day
	PROC 1	0.01	mg/m3
Inhalation exposure	PROC 2	0.001	mg/m3
	PROC 8b	0.005	mg/m3
	PROC 9	0.01	mg/m3

It should be noted that while some of the previously stated measured concentrations are above those estimated by the model, all inhalation exposures (based on standard inhalation of 10 m³ per shift (day) for a 70 kg worker) are significantly below the systemic long term DNEL (see 10.1.1). This is the case for both the molten and flake form.

Measured dermal exposure data are not available. The widespread use of protective clothing (especially industrial gloves and goggles) minimises dermal exposure. There is no dermal exposure to the molten material (see above), and equipment is designed to minimise contact with the flaked material.

Consumer exposure

Consumers are not exposed to phthalic anhydride during the production process of ES1.

Environmental exposure

Environmental releases

EUSES inputs for ES1

Input parameter:	Value:	Unit:	ERC default (if applicable)
Molecular Weight	148.1156	g/mol	
Vapour Pressure	0.0006	hPa	
Water Solubility	11,200 (average of range)	mg/L	
Octanol/water partition coefficient	1.60	logKow	
Кос	10.84		
	(estimated)		

Input parameter:	Value:	Unit:	ERC default (if applicable)
Biodegradability	Readily		
	Biodegradable		
Life Cycle Step	Production		
Tonnage (regional)	950,000	Tonnes	
Environmental	ERC1		
Release Class			
Fraction of Tonnage			1
for Region			
Fraction of the main	0.1		This value has been chosen as a
local source			conservative overestimate of the local
			scale tonnage at a worst case facility. In
			reality the actual on site tonnages will
			be less in any single site. Company
			information has indicated that this
			value leads to a local tonnage which is
			higher (and therefore representative)
			than any actual site. This gives a local
			tonnage of 95,000 tpa.
STP			Yes
Emission events per	360 (tier 2	Days	300
year	value)		
Default Release to	5	%	5
Air			
Default Release to	6	%	6
Water			
Dilution factor			10 (20,000 m ³ /d)
applied for PEC			
derivation			

RMMs and measured values for ES1 tier 2 assessment.

Description of RMM	Details	Effect taken into account in EUSES	Comments
Measured loss to waste water	20 mg/L	Lowering of concentration in STP effluent to 2.53 mg/L	Worst case measured emission value which covers all facilities over all ESs for phthalic anhydride.
Emission and	360	Increase	Continuous production
production days	emission/productio	emission days	
	n days per year	by 20%.	
Sludge removal	Sludge removed to landfill or incinerated.	Concentration in soil due to sludge spreading set to 0.	No contamination of grassland or agricultural soil.

Description of RMM	Details	Effect taken into account in EUSES	Comments
Measured stack gas emissions	Atmospheric losses of 1.8kg/hour.	Emission to the air of 43.2 kg/day.	Worst case emissions prior to scrubbing or incineration. Thus actual emissions to the environment will be even lower.

Table 8 Predicted Releases to the Environment Tier 2

Compartments	Predicted releases	Measured release	Explanation / source of measured data
Release to water	40 kg/d	-	Predicted values are those calculated by EUSES using the worst case measured emissions in waste water.
Release to air	43.2 kg/d	-	Predicted values are those calculated by EUSES using the worst case measured emissions to the atmosphere before scrubbing or incineration.
Soil (direct only) Agricultural soil	0 kd/d	-	No directly loss to soil is expected for this ERC and no sludge spreading.

^{*}The predicted releases

Exposure concentration in sewage treatment plants (STP)

Table 9: Tier 2 Concentrations in sewage

ERC 1 for Compartment:	Estimated exposure concentrations		Measured exposure concentrations		Explanation / source of measured data
	value	unit	value	unit	
Waste water before treatment	-	mg/L	20	mg/L	Measured worst case STP data from consortium members
Sewage (STP effluent)	2.53	mg/L	-	mg/L	
Sludge	51.8	mg/kg			
Local freshwater	0.257	mg/L	-	mg/L	10-fold dilution by receiving waters

Table 10: Conservative emission fractions from the STP

Fraction description	Fraction amount value unit	
Fraction of emission directed to air by STP	0.000138	%

Fraction description	Fraction amount	
	value	unit
Fraction of emission directed to water by STP	12.6	%
Fraction of emission directed to sludge by STP	0.0102	%
Fraction of emission degraded by STP	87.3	%

Exposure concentration in the aquatic pelagic compartment

Table 11: Tier 2 Local Concentrations in aquatic pelagic compartment

Compartments	PEC aquatic	Justification
	(local mg/L)	
Freshwater (in mg/I)	0.253	
Marine water (in mg/l)	0.0253	10-fold dilution by receiving
		waters
Intermittent releases to water (in	Not relevant	
mg/l)		

Table 12: Tier 2 Predicted Exposure Concentrations (PEC) in aquatic pelagic compartment

Compartments	PEC aquatic	Justification
	(local mg/L)	
Freshwater (in mg/I)	0.257	
Marine water (in mg/l)	0.0258	10-fold dilution by receiving
		waters
Intermittent releases to water (in	Not relevant	
mg/l)		

Exposure concentration in sediments

Tier 2 Local Concentrations in aquatic sediment compartment

Compartments	PEC aquatic (local)
Freshwater sediment (in mg/kg wwt)	0.261
Marine sediment (in mg/kg wwt)	0.0258

Table 13: Tier 2 Predicted Exposure Concentrations (PEC) in aquatic sediment compartment

Compartments	PEC aquatic (local)
Freshwater sediment (in mg/kg wwt)	0.261
Marine sediment (in mg/kg wwt)	0.0258

Exposure concentrations in soil and groundwater

Tier 2 Local Concentrations in the soil and groundwater compartment

Compartments	PEC (local)
Agricultural soil (averaged over 30 days	0.0023
(in mg/kg)	

Groundwater (in mg/I)	0.013

Table 14: Tier 2 Predicted Exposure Concentrations (PEC) in the soil and groundwater compartment

Compartments	PEC (local)
Agricultural soil (averaged over 30 days	0.0023
(in mg/kg)	
Groundwater (in mg/l)	0.013

Atmospheric compartment

Tier 2 local concentrations in air

	Estimated local exposure concentrations	Explanation / source of data
During emission (mg/m3)	0.012	Estimated using EUSES 2.1
Annual average (mg/m3)	0.012	Estimated using EUSES 2.1
Annual deposition (mg/m²/d)	0.0217	Estimated using EUSES 2.1

Table 15: Tier 2 Predicted Exposure Concentration (PEC) in air

	Local concentration	PEC air (local+regional)	Justification
Annual average PEC in air, total (mg/m3)	0.012	0.012	Estimated using EUSES 2.1.

Exposure concentration relevant for the food chain (Secondary poisoning)

Regional exposure levels and environmental concentrations

Regional tier 2 concentrations in the environment

	Predicted regional Exposure Concentrations		Measured regional exposure concentrations		Explanation / source of
	PEC value	unit	Measured value	unit	measured data
Freshwater	0.00381	mg/l	NA	mg/l	
Marine water	0.00004	mg/l	NA	mg/l	
Freshwater sediments	0.00339	mg/kg	NA	mg/kg	
Marine sediments	0.00004	mg/kg	NA	mg/kg	
Agricultural soil	0.00136	mg/kg	NA	mg/kg	
Grassland	0.00190	mg/kg	NA	mg/kg	
Air	7.2 x 10 ⁻⁷	mg/m3	NA	mg/m3	

The presented regional PECs above are those generated in the tier 2 assessment with worst case measured emissions taken into account.

Use of phthalic anhydride as a monomer

Exposure scenario 3 relates to use of phthalic anhydride as a monomer by downstream users. However, the procedures for dealing with the molten material and the flake as a monomer will involve very similar procedures to those of production and use as an intermediate. Therefore it is anticipated that the exposure and emission scenarios for these uses will be very similar to those for production of phthalic anhydride with up to 360 days production emission days per year.

The use of phtahlic anhydride as a monomer includes the production of alkyl resins which are manufactured using a <u>polymerization</u> reaction between an alcohol, such as <u>glycerol</u>, and a di carboxylic anhydride (<u>phthalic anhydride</u>). Glycerol and phthalic anhydride react to form the polyester glyptal. A further example of PA use as a monomer is the manufacturing of polyester polyols. This process is very similar to that one described in the alky resins manufacturing. The raw materials are phthalic anhydride and polyhydric alcohols. The polyester obtained is not dissolved in any solvent but is used in the formation of polyurethanes particularly polyurethane elastomers, flexible/semi-rigid polyurethane foams and polyurethane coatings. As with previous exposure scenarios worker exposure has been assessed using ECETOC TRA and environmental exposure has been assessed using EUSES 2.1.

Exposure scenario

Short title of the exposure scenario: Use of phthalic anhydride as a monomer **Sectors of Use:**

SU3: Industrial uses: Uses of substances as such or in preparation at industrial sites SU10: Formulation [mixing] of preparation and/or re-packaging (excluding alloys) SU12: Manufacture of plastics products, including compounding and conversion

Produce Category:

PC32: Polymer preparations and compounds

Process Categories:

PROC01: Use in closed process, no likelihood of exposure

PROC02: Use in closed, continuous process with occasional controlled exposure

PROC03: Use in closed batch process (synthesis or formulation)

PROC04: Use in batch and other process (synthesis) where opportunity for exposure arises

PROC08B: Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at dedicated facilities

PROC9: Transfer of substance or preparation into small containers (dedicated filling line, including weighing)

Environmental Release Category:

ERC6C: Industrial use of monomers in the production of plastics (polymers).

ERC6D: Industrial use of process regulators for polymerisation processes in production of resins, rubbers, polymers.

Description of activities and processes covered in the exposure scenario

The procedures for dealing with the molten material and the flake as a monomer will involve very similar procedures to those of production and use as an intermediate. Therefore it is anticipated that the exposure and emission scenarios for these uses will be very similar to those for production of phthalic anhydride with up to 360 days production emission days per year.

The use of phthalic anhydride as a monomer includes the production of alkyld resins which are manufactured using a <u>polymerization</u> reaction between an alcohol, such as <u>glycerol</u>, and a di carboxylic anhydride (<u>phthalic anhydride</u>). Glycerol and phthalic anhydride react to form the polyester glyptal. A further example of PA use as a monomer is the manufacturing of polyester polyols. This process is very similar to that one described in the alkyd resins manufacturing. The raw materials are phthalic anhydride and polyhydric alcohols. The polyester obtained is not dissolved in any solvent but is used in the formation of polyurethanes particularly polyurethane elastomers, flexible/semi-rigid polyurethane foams and polyurethane coatings.

Operational conditions related to frequency, duration and amount of use

Table 16: Duration, frequency and amounts

Information type	Data field	Explanation
Use amount per worker [workplace] per day	No data	Worker exposure considered to be negligible for the molten form as it remains enclosed due to the high temperatures. Worker exposure considered to be negligible for the flake form as flakes are produced in closed systems
Duration per day at workplace [for one worker]	8hr/d	Standard number of hours in one work day
Frequency at workplace [for one worker]	220 d/year	Standard number of work days / year
Other determinants related to duration, frequency and amount of use	Intermittent contact is expected	These tasks rarely take a full 8hr / day so worst case is assumed.
Annual amount used per site	37,500 t/y	Worst case on-site tonnage
Emission days per site	360 d/y	Estimate number of emission days, based on continuous use

Remarks or additional information:

Note that there is no professional or consumer use of phthalic anhydride for this exposure scenario. Note also that phthalic anhydride is not incorporated in any article for this exposure scenario.

Operational conditions related to product characteristics

Table 17: Product Characteristic

Information type	Data field	Explanation
Type of product the information relates to	Substance as such	The product can be sold in the form of flakes or alternatively in liquid form in a sealed tank container.
Physical state of product	Flakes or liquid melt	In the EU, approximately 5% of production is in the flaked form.
For solids: Flaked form	Low dustiness	Considered low due to flake size.
Concentration of substance in product	>99.8 %	

Remarks or additional information:

Handling of molten phthalic anhydride involves high temperatures, and high integrity contained systems with little or no potential for exposure. Pipelines and vessels are sealed and insulated. Workers involved in production work in a control room, with no direct contact to the installations housing the material. Workers involved in sampling and transfer of materials to road tankers are trained in the procedures and protective equipment is intended to cope with the worst case scenario, in order to minimise exposure and risks. Workers handling the flaked product need to employ various Risk Management Measures to reduce exposures. These include enclosed machinery, such that the bags containing the flaked material are emptied under enclosed conditions, with LEV preventing emission of dust; where the potential for dusts cannot be fully avoided, workers will need effective face masks with filters and face/eye/skin protection.

Other operational conditions of use

Table 18: Respiration volume and skin contact under conditions of worker uses

Information type	Data field	Explanation
Respiration volume under conditions of use	10m³/d	Default value for a worker breathing for a 8hrs work day in RIP 3.2
Skin contact area with the substance under conditions of use	480cm ²	Assumes 2 hands and face only (ECETOC TRA tool)

Table 19: Conditions leading to dilution of initial release related to human health

Information type	Data field	Explanation
Room size and ventilation rate	NA	Not relevant as workers involved in production work in a control room,
		with no direct contact to the
		installations housing the material

Table 20: Conditions leading to dilution of initial release related to environment

Information type	Data field	Explanation
Discharge volume of sewage treatment plant	2000 m ³ /d	EUSES default value for standard local STP
Available river water volume to receive the emissions from a site	20,000 m ³ /d	Standard ERC flow rate leading to a 10 fold dilution in receiving waters.

Risk management measures

Risk management measures for industrial site

	Risk management measures for industrial site			
Information type	Data field	Explanation		
Containment and local exhaust vent	ilation			
Containment and local exhaust vent Containment plus good work practice required	Effectiveness: Unknown	Handling of molten phthalic anhydride involves high temperatures, and high integrity contained systems with little or no potential for exposure. Pipelines and vessels are sealed and insulated. Workers involved in production work in a control room, with no direct contact to the installations housing the material. Handling of molten phthalic		
Local exhaust ventilation is not required is not required to demonstrate a safe use but may be present depending on the design of the premises	Effectiveness : Unknown	anhydride involves high temperatures, and high integrity contained systems with little or no potential for exposure. Pipelines and vessels are sealed and insulated. Workers involved in production work in a control room, with no direct contact to the installations housing the material.		
Personal protective equipment (PPE		5		
Type of PPE (gloves, respirator, face-shield etc)	Effectiveness: Unknown	Handling of molten phthalic anhydride involves high temperatures, and high integrity contained systems with little or no potential for exposure. Pipelines and vessels are sealed and insulated. Workers involved in production work in a control room, with no direct contact to the installations housing the material. Workers involved in sampling and transfer of materials to road tankers are trained in the procedures and protective equipment is intended to cope with the worst case scenario, in order to minimise exposure and risks.		
Other risk management measures related to workers				
No further risk management measures required				
Risk management measures related to environmental emissions from industrial sites				
Onsite pre-treatment of waste water	Chemical pre-treatment or onsite STP.	Waste waters are generally treated on site by chemical and/or biological methods before release to the municipal STP or to the		

Information type	Data field	Explanation
		environment.
Resulting fraction of initially applied amount in waste water released from site to the external sewage system	Varies depending on system. Estimated concentration in the STP effluent is between 2 and 3mg/L based on worst case measured emissions.	Worst case measured releases for the phthalic anhydride life cycle are considered below and have been determined to be safe for the environment. Exhaust gases absorbed in wet scrubbers or removed by
Air emission abatement	Effectiveness: Adequate measures in place	incineration. Worst case measured emission values are considered below and are found to be safe for the environment. The emission to air is therefore considered to be negligible.
Resulting fraction of applied amount in waste gas released to environment	43.2 kg/d	Worst case measured values before scrubbing. This value has been inputted into the environmental risk assessment and is determined to be safe for the environment. As such the actual release levels after scrubbing or incineration will pose no threat to the environment.
Onsite waste treatment	Effectiveness: 87.3%	Simpletreat within EUSES assumes 87.3% removal in the STP system. This is considered to be conservative.
Effluent (of the waste water	2000 3/1	D (1) 2 222 3/1
treatment plant) discharge rate	2000 m ³ /d	Default: 2.000 m ³ /d
Recovery of sludge for agriculture or horticulture	None	All sludge is collected and incinerated or sent to landfill.
Resulting fraction of initially applied amount in waste water released from site	12.6%	Simpletreat within EUSES assumes 12.6% emission in effluent from the STP system. This is considered to be overestimated.

Waste related measures

Table 21: Fractions of substance in waste and waste management measures

Information type	Data field	Explanation
		Based on worst case emission
		to waste waters identified.
Amount of substances in waste		Actual emissions are
water resulting from identified uses		expected to be considerably
covered in the exposure scenario	40 kg/d	less.
Amount of substances in waste		
resulting from service life of articles	Not applicable	
Type of waste, suitable waste codes	Suitable EWC code(s)	

Information type	Data field	Explanation
Type of external treatment aiming		
at recycling or recovery of		
substances	None	
		Sludge removed to landfill or
Type of external treatment aiming		incinerated. No emission to
at final disposal of the waste	Incineration or landfill.	soil.
Fraction of substance released into		
the environment via air from waste		
handling	Not applicable	
Fraction of substance released into		
the environment via waste water		
from waste handling	Not applicable	
Fraction of substance disposed of		
as secondary waste	Not applicable	

Exposure estimation

Workers exposure

Note that there is no EU Workplace Exposure Limit for phthalic anhydride, nor has the German DFG recommended a MAC. Switzerland has established a shift value of 1 mg/m³ and a short-time (15 minutes) value of 1 mg/m³. France has an 8-hour VLEP of 10 mg/Nm³. The present CSR recommends a long-term inhalation DNEL for workers of 32.2 mg/m³ and a dermal DNEL of 10 mg/kg bw/day.

Acute/Short-term exposure

Not relevant based on the hazard assessment and therefore will not be assessed.

Long-term exposure

Table 113 shows the estimated exposure concentration to workers. The exposure estimates were generated using the ECETOC TRA model using the parameters listed below:

Table 22: Parameters used in ECETOC modelling

	Value used	Explanation/source of data
Molecular weight	148.1156 g/mol	
Vapour Pressure	0.06 Pa	
Water solubility	11200 mg/L	
Partition coefficient octanol-	logKow = 1.6	
water		
Biodegradability	Readily biodegradable	
Is the substance a solid?	No/Yes	No in case of molten. Yes in case
		of flake
Dustiness during process	Low	Only in the case of solid
Duration of activity	>4 hours (default)	
Use of ventilation	Indoors without LEV (for PROC 1).	
	Indoors with LEV for other PROCs	

Long-term exposure concentrations to workers from molten liquid

	PROC	Estimated Exposure Concentrations	
Routes of exposure		value	unit
Damaslavasavas	PROC 1	0.343	mg/kg/da y
Dermal exposure	PROC 2	0.137	mg/kg/da y

	PROC	Estimated Exposure Concentrations	
Routes of exposure		value	unit
	PROC 3	0.0343	mg/kg/da v
	PROC 4	0.686	mg/kg/da y
	PROC 8b	0.686	mg/kg/da y
	PROC 9	0.686	mg/kg/da y
	PROC 1	0.617	mg/m3
	PROC 2	0.617	mg/m3
Inhalation exposure	PROC 3	0.617	mg/m3
	PROC 4	0.617	mg/m3
	PROC 8b	0.617	mg/m3
	PROC 9	0.617	mg/m3

Table 23: Long-term exposure concentrations to workers from flakes

	PROC	Estimated Exposure Concentrations		
Routes of exposure		value	unit	
	PROC 1	0.0343	mg/kg/da y	
	PROC 2	0.137	mg/kg/da y	
Dormal ovnocuro	PROC 3	0.0343	mg/kg/da y	
Dermal exposure	PROC 4	0.686	mg/kg/da y	
	PROC 8b	0.686	mg/kg/da y	
	PROC 9	0.686	mg/kg/da y	
	PROC 1	0.01	mg/m3	
	PROC 2	0.001	mg/m3	
Inhalation exposure	PROC 3	0.01	mg/m3	
illiaiation exposure	PROC 4	0.05	mg/m3	
	PROC 8b	0.005	mg/m3	
	PROC 9	0.01	mg/m3	

Consumer exposure

Consumers are not exposed to phthalic anhydride during the process of ES3.

Environmental exposure

The environmental releases are determined primarily by tonnage and the ERC in the first tier with conservative estimations and defaults being implemented in EUSES. For the second tier assessment in EUSES industrial categories and use types are chosen to best suit the description of the use as a monomer of Phthalic Anhydride. Emission defaults are those specified by the ECHA "Guidance on information requirements and chemical safety assessment: Chapter R.16: Environmental Exposure Estimation". Regional data and emission fractions were calculated using EUSES. Full EUSES inputs for monomer use are shown below.

For ES3 (use as a monomer) ERC's number 6c and 6d were used to determine environmental emissions.

· ELICEC	innute fo	r environmental	accaccment
. LUJLJ	IIIDULS IO	i environnientai	assessiliell

Input parameter:	Value:	Unit:	ERC default (if applicable)
Molecular Weight	148.1156	g/mol	
Vapour Pressure	0.0006	hPa	
Water Solubility	11,200 (average	mg/L	
	of range)		
Octanol/water	1.60	logKow	
partition coefficient			
Кос	10.84		
	(estimated)		
Biodegradability	Readily		
	Biodegradable		
Life Cycle Step	Intermediate		
	use		
Tonnage (regional)	370,500	Tonnes	
Environmental	ERC6c, 6d		
Release Classes			
Fraction of the main	0.1		This value has been chosen as a
local source			conservative overestimate of the local
			scale tonnage at a worst case facility.
			In reality the actual on site tonnages
			will be less in any single site. Company
			information has indicated that this
			value leads to a local tonnage which is
			higher (and therefore representative)
			than any actual site. This gives a local
			tonnage of 37,500 tpa on one site.
STP		_	Yes
Emission events per	360	Days	3000
year			
Default Release to	ERC 6C:5	%	ERC 6C:5
Air	ERC 6D: 35		ERC 6D: 35
Default Release to	ERC 6C:5	%	ERC 6C:5
Water	ERC 6D:0.005		ERC 6D:0.005
Dilution factor			10 (20,000 m³/d)
applied for PEC			
derivation			

For the tier 1 assessment of environmental releases the release estimation was based on the tonnage data and the ERC defaults. However the initial first tier calculations were not considered to give a reasonable assessment of the actual emission levels (and were not considered sufficient to demonstrate safe use), and so a tier 2 assessment has been carried out. In order to avoid confusion and to avoid the presentation of multiple tiers of data the first tier calculations which were carried out for ES3 are not presented below. For the tier 2 assessment of environmental releases the effects of several RMMs have been investigated alongside the worst case measure values obtained from consortium members to cover the uses of phthalic anhydride. For ES3 monomer use the RMMs and measured values taken into account are listed below. The worst case measured emission value to water and the atmosphere covers all facilities over all ESs for phthalic anhydride. As this emission concentration is obtained from a facility which carries out several processes using phthalic anhydride (and several ESs) it was not possible to define the individual

contribution of this emission for each ES. As such the measured value actually takes into account worst case emission levels for several processes (production and intermediate use for example) and as such should be considered to be a worst case assumption which is applicable for all industrial exposure scenarios.

For the tier 2 assessment of environmental releases the effects of several RMMs have been investigated alongside the worst case measure values obtained from consortium members to cover the production uses of phthalic anhydride. For ES3 monomer use the RMMs and measured values taken into account are listed below.

Table 24: RMMs and measured values for ES2 tier 2 assessment.

Description of RMM	Details	Effect taken into account in EUSES	Comments
Measured loss to waste water (ERC 6C and 6D only)	20 mg/L	Lowering of concentration in STP effluent to 2.53 mg/L	Worst case measured emission value which covers all facilities over all ESs for phthalic anhydride.
Emission and production days (ERC 6C and 6D only)	360 emission days per year	Increase emission days by 20%.	Continuous intermediate use
Sludge removal	Sludge removed to landfill or incinerated.	Concentration in soil due to sludge spreading set to 0.	No contamination of grassland or agricultural soil.
Measured stack gas emissions	Atmospheri c losses of 1.8kg/hour.	Emission to the air of 43.2 kg/day.	Worst case emissions prior to scrubbing or incineration. Thus actual emissions to the environment will be even lower. This emission value covers all facilities over all ESs for phthalic anhydride as it is worst case for all facilities considered.

Table 25 Predicted Releases to the Environment Tier 2

Table 23 Fredicted Releases to the Environment Tier 2							
ERC	Compartments	Predicted releases	Measured release	Explanation / source of measured data			
	Release to water	40 kg/d	-	Predicted values are those calculated by EUSES using the worst case measured emissions in waste water.			
	Release to air	43.2 kg/d	-	Predicted values are those calculated by			

ERC	Compartments	Predicted releases	Measured release	Explanation / source of measured data
6C				EUSES using the worst case measured emissions to the atmosphere before
	Soil (direct only) Agricultural soil	0 kd/d	-	scrubbing or incineration. No directly loss to soil is expected for this ERC and no sludge spreading.
	Release to water	61.8kg/d	Predicted values are those calculated by EUSES using the tonnage data and defau ERC6D. No refinement required.	
6D	Release to air	43.2 kg/d	-	Predicted values are those calculated by EUSES using the tonnage data and defaults for ERC6D.
	Soil (direct only) Agricultural soil	0 kd/d	-	No directly loss to soil is expected for this ERC and no sludge spreading.

^{*}The predicted releases were estimated using the EUSES 2.1 program.

Exposure concentration in sewage treatment plants (STP)

On contact with water, phthalic anhydride is converted to phthalic acid. Therefore the PEC values presented are essentially those for phthalic acid. As the two substances are considered to be suitable for read across purposes, the PECs and PNECs can be considered equivalent. Phthalic anhydride is produced on a large scale, generally on major chemical sites, with dedicated effluent treatment facilities, involving both chemical and biological treatment, coping with many chemical substances. Biodegradation and microbiological toxicity tests have shown that phthalic anhydride (or phthalic acid) is not toxic to microorganisms and is biodegradable. Disposal of sewage sludge is either by controlled high temperature incineration or to landfill. The model appears to predict 87% removal by STP. However actual measured data indicate at least 99.5% removal by STP and the assumptions used in assessing waste removal levels are therefore worst case.

Tier 2 Concentrations in sewage

ERC	ERC for Compartme nt:	Estimated exposure concentrations		Measured exposure concentrations*		Explanation / source of measured data
		value	unit	value	unit	
	Waste water		mg/	20	mg/L	
	before		L			
	treatment					
	Sewage (STP	2.53	mg/		mg/L	
6C	effluent)		L			
	Sludge	51.8	mg/			
			kg			
	Local	0.253	mg/		mg/L	10-fold dilution by receiving
	freshwater		L			waters
	Waste water	30.9	mg/	-	mg/L	Tier 1 value. Refinement not
	before		L			required
6D	treatment					
	Sewage (STP	3.9	mg/		mg/L	Tier 1 value. Refinement not
	effluent)		L			required
	Sludge	78.9	mg/			Tier 1 value. Refinement not
			kg			required

Local	0.39	mg/	mg/L	Tier 1 value. Refinement not
freshwater		L		required

Table 26: Conservative emission fractions from the STP

Fraction description	Fraction amount	
	value	unit
Fraction of emission directed to	0.000138	%
air by STP		
Fraction of emission directed to	12.6	%
water by STP		
Fraction of emission directed to	0.0102	%
sludge by STP		
Fraction of emission degraded	87.3	%
by STP		

Exposure concentration in the aquatic pelagic compartment

Table 27: Tier 2 Local Concentrations in aquatic pelagic compartment

ERC	Compartments	PEC aquatic (local	Justification	
		mg/L)		
	Freshwater (in mg/l)	0.253		
	Marine water (in mg/l)	0.0253	10-fold dilution by	
6C			receiving waters	
	Intermittent releases to water (in	Not relevant		
	mg/l)			
	Freshwater (in mg/I)	0.39	Tier 1 value. Refinement	
			not required.	
	Marine water (in mg/l)	0.039	10-fold dilution by	
			receiving waters	
6D				
	Intermittent releases to water (in	Not relevant		
	mg/l)			

Table 28: Tier 2 Predicted Exposure Concentrations (PEC) in aquatic pelagic compartment

ERC	Compartments	PEC aquatic (local	Justification	
		mg/L)		
	Freshwater (in mg/l)	0.254		
	Marine water (in mg/l)	0.0250	10-fold dilution by	
6C			receiving waters	
	Intermittent releases to water (in mg/l)	Not relevant		
	Freshwater (in mg/l)	0.39	Tier 1 value. Refinement	
			not required.	
6D				
	Marine water (in mg/l)	0.039	10-fold dilution by	
			receiving waters	
	Intermittent releases to water (in	Not relevant		
	mg/l)			

Exposure concentration in sediments

Phthalic anhydride (phthalic acid) has been measured in receiving waters at levels <0.1 mg/L. It is biodegradable, and it can be anticipated that it will be degraded either in the water column, or in the upper

aerobic layers of any sediment. Phthalic anhydride and its hydrolysis product phthalic acid have a log K_{ow} of 1.6 and 0.73, respectively. These values indicate that both substances have a low adsorption potential on sediments (see 7.1). The weight of evidence strongly indicates that phthalic acid will not accumulate in sediments. Nevertheless PECsediment values as calculated by EUSES are presented below. The tier 2 predicted environmental concentrations in sediment are extremely low and suggest that the risk to sediment dwelling organisms from use of Phthalic Anhydride as an monomer is likely to be negligible

Tier 2 Local Concentrations in aquatic sediment compartment

ERC	Compartments	Concentration
	Freshwater sediment (in mg/kg wwt)	0.259
6C	Marine sediment (in mg/kg wwt)	0.0258
Freshwater sediment (in mg/kg wwt) Marine sediment (in mg/kg wwt)		0.404 (tier 1 value, no refinement required)
		0.040 (tier 1 value, no refinement required)

Table 29: Tier 2 Predicted Exposure Concentrations (PEC) in aquatic sediment compartment

ERC	Compartments	Concentration
	Freshwater sediment (in mg/kg wwt)	0.259
6C	Marine sediment (in mg/kg wwt)	0.0258
	Freshwater sediment (in mg/kg wwt)	0.404 (tier 1 value, no
6D		refinement required)
	Marine sediment (in mg/kg wwt)	0.040 (tier 1 value, no
		refinement required)

These predictions do not take into account the biodegradable nature of phthalic acid, and should therefore be regarded as worst-case.

Exposure concentrations in soil and groundwater

There is no direct disposal of sewage sludge to soil, as disposal of sewage sludge is either by controlled high temperature incineration or to landfill. Therefore there is no direct exposure to soil or groundwater. Emissions to air are negligible, and therefore indirect emissions to soil (and groundwater) via atmospheric deposition are also negligible. Any phthalic anhydride in the atmosphere will be converted to phthalic acid on contact with atmospheric moisture, and any phthalic acid in rainfall will degrade rapidly on contact with soil. These factors have been taken into account in the tier 2 assessment.

Tier 2 Local Concentrations in the soil and groundwater compartment

ERC	Compartments	Concentration
6C	Agricultural soil (averaged over 30 days (in mg/kg)	0.0539
	Groundwater (in mg/l)	0.0624
6D	Agricultural soil (averaged over 30 days (in mg/kg)	0.0816
	Groundwater (in mg/l)	0.0878

Table 30: Tier 2 Predicted Exposure Concentrations (PEC) in the soil and groundwater compartment

ERC	Compartments	Concentration	

6C	Agricultural soil (averaged over 30 days (in mg/kg)	0.0559
	Groundwater (in mg/l)	0.0624
6D	Agricultural soil (averaged over 30 days (in mg/kg)	0.0835
	Groundwater (in mg/l)	0.0878

These predicted values should be assessed in the light of the above statement on sewage sludge, and the information on atmospheric compartment below.

Atmospheric compartment

As noted previously, emissions to the atmosphere are controlled by either aqueous scrubbers, in which all phthalic anhydride is converted to the soluble phthalic acid, cloth filters or incineration. Removal rates in both cases show an efficiency of >98%.

The maximum value submitted for a stack emission following aqueous scrubber treatment was $2mg/m^3$, with other values at the analytical limit of $<0.1 mg/Nm^3$. The residues from the aqueous scrubber are sent to the on-site STP for processing. Stack emissions on an annual basis are estimated to be 5 kg/year from one major production site (\sim 100,000 tpa).

For the atmospheric compartment the Tier 1 predictions for ERC 6D assume 35% of tonnage is released to atmosphere, which for a plant using 50,000tpa is 17,500tpa, or approximately 50 tonnes per day, this is highly unrealistic. Tier 2 concentrations are thus based on the worst case measured stack emissions before gas treatment and are therefore worst case. Tier1 and Tier 2 local concentrations and PECs for air are shown below.

Tier 2 local concentrations in air

ERC		Estimated local exposure concentrations	Explanation / source of data
	During emission (mg/m3)	0.012	Estimated using EUSES 2.1
6C	Annual average (mg/m3)	0.0118	Estimated using EUSES 2.1
	Annual deposition (mg/m²/d)	0.0214	Estimated using EUSES 2.1
	During emission (mg/m3)	0.012	Estimated using EUSES 2.1
6D	Annual average (mg/m3)	0.0098	Estimated using EUSES 2.1
	Annual deposition (mg/m²/d)	0.0178	Estimated using EUSES 2.1

Table 31: Tier 2 Predicted Exposure Concentration (PEC) in air

	Table 31: Her 2 i redicted Exposure Concentration (i Ec) in an				
ERC		Local concentration	PEC air (local+regional)	Justification	
6C	Annual average PEC in air, total (mg/m3)	0.012	0.012	Estimated using EUSES 2.1.	
6D	Annual average PEC in air, total (mg/m3)	0.0098	0.0098	Estimated using EUSES 2.1.	

Exposure concentration relevant for the food chain (Secondary poisoning)

Phthalic anhydride is readily biodegradable in atmospheric, aquatic and soil compartments, and does not bioaccumulate. Removal by STP is effective. Therefore it is considered unlikely that humans will be exposed indirectly either by way of direct contact with the air, surface waters or soils, or by way of drinking water, or through exposure in the food chain.

Regional exposure levels and environmental concentrations.

Phthalic anhydride may be produced at several sites throughout a region and this may lead to a degree of regional exposure. Regional exposure has been modelled for the production of Phthalic anhydride using the regional module of EUSES 2.1. No significant PEC values are indicated for the regional scale even under the conservative assumptions of the Tier 2 EUSES assessment.

Table 32: Regional concentrations in the environment as determined by EUSES 2.1

ERC 6C	Predicted regio Concentrations	edicted regional Exposure Measured region concentrations		al exposure	Explanati on /
	PEC value	unit	Measured value	unit	source of measured data
Freshwater	0.0012	mg/l	NA	mg/l	
Marine water	0.000014	mg/l	NA	mg/l	
Freshwater sediments	0.0011	mg/kg	NA	mg/kg	
Marine sediments	0.000013	mg/kg	NA	mg/kg	
Agricultural soil	0.0001	mg/kg	NA	mg/kg	
Grassland	0.0019	mg/kg	NA	mg/kg	
Air	7.2 x 10 ⁻⁷	mg/m³	NA	mg/m ³	

ERC 6D	Predicted regional Exposure Concentrations		Measured regional exposure concentrations		Explanati on /
	PEC value	unit	Measured value	unit	source of measured data
Freshwater	0.00002	mg/l	NA	mg/l	
Marine water	4.6 x 10 ⁻⁷	mg/l	NA	mg/l	
Freshwater sediments	1.7 x 10 ⁻⁵	mg/kg	NA	mg/kg	
Marine sediments	4.1 x 10 ⁻⁷	mg/kg	NA	mg/kg	
Agricultural soil	0.00009	mg/kg	NA	mg/kg	
Grassland	0.0018	mg/kg	NA	mg/kg	
Air	7.2 x 10 ⁻⁷	mg/m ³	NA	mg/m ³	

ES 4: Formulation, mixture, refilling and reloading of phthalic anhydride

Exposure scenario 4 concerns the use of phthalic anhydride during formulation, mixture, refilling and reloading operations. The procedures for dealing with the molten and flake material include reloading tankers, piping the molten material to fill heated storage vessels and transferring to mixers/blenders to formulate preparations. These operations remain under contained conditions. The processes are computer controlled, with the supervising operators working in dedicated plant control rooms. It is anticipated that the exposure and emission scenarios for these formulation, mixture, reloading and mixing operations uses will be very similar to production with up to 360 emission days per year.

The molten form of phthalic anhydride exists at high temperature and as such contains an intrinsic thermal risk that is controlled by a high degree of system closure. The high temperature conditions also need to be maintained in order to allow the material to remain in the molten state so that it can be pumped along sealed pipelines, either for direct mixing/formulation use, or transfer to containers or tankers (which are also heated or insulated to maintain the molten states, in order for the material to be useable for the processes of this ES by the downstream users). The pipelines and any storage vessels are heated and insulated, and are not open to the atmosphere which reduces atmospheric loss from this ES. The vessel and tanker insulation has the dual function of maintaining temperature and preventing worker exposure and release to the environment.

Any small losses of gas from vessels and tankers (from venting for example) can be passed through catalytic incinerators or aqueous scrubbers to remove any phthalic anhydride from the waste gas. Tanker connecting and disconnecting (loading, unloading and reloading) generally takes place in the open air. Respiratory equipment and protective clothing are worn when connecting and disconnecting tankers. Gas displacement lines are also used if filling of road tankers takes place under cover. In the EU 95% of operations take place using the molten form with use of the flaked form only constituting 5%.

Flaking machines and systems are enclosed, with LEV equipment to prevent exposure to dusts from the flaked form. In some cases exhausts loss from the LEV may be fed back to the molten stream, scrubbed or incinerated. LEV would generally function in the same way for mixing, reloading and refilling of containers with the flake. The nature of the phthalic anhydride dictates that high-integrity closed systems are used throughout.

Exposure scenario

Short title of the exposure scenario: Formulation, mixture, refilling and reloading of phthalic anhydride

Sector of Use:

SU3: Industrial uses: Uses of substances as such or in preparation at industrial sites SU10: Formulation [mixing] of preparation and/or re-packaging (excluding alloys)

Process Categories:

PROC01: Use in closed process, no likelihood of exposure

PROC02: Use in closed, continuous process with occasional controlled exposure

PROC03: Use in closed batch process (synthesis or formulation)

PROC04: Use in batch and other process (synthesis) where opportunity for exposure arises

PROC05: Mixing or blending in batch processes for formulation of preparations and articles (multistage and/or significant contact)

PROC08b: Transfer of substance or preparation (charging/discharging) from/to vessels/large containers at dedicated facilities

PROC09: Transfer of substance or preparation into small containers (dedicated filling line, including weighing

Environmental Release Category:

ERC02: Formulation of preparations

Description of activities and processes covered in the exposure scenario

The procedures for dealing with the molten and flake material include reloading tankers, piping the molten material to fill heated storage vessels and transferring to mixers/blenders to formulate preparations. These operations remain under contained conditions. The processes are computer controlled, with the supervising operators working in dedicated plant control rooms. It is anticipated that the exposure and emission scenarios for these formulation, mixture, reloading and mixing operations uses will be very similar to production with up to 360 days emission days per year.

The molten form of phthalic anhydride exists at high temperature and as such contains an intrinsic thermal risk that is controlled by a high degree of system closure. The high temperature conditions also need to be maintained in order to allow the material to remain in the molten state so that it can be pumped along sealed pipelines, either for direct mixing/formulation use, or transfer to containers or tankers (which are also heated or insulated to maintain the molten states, in order for the material to be useable for the processes of this ES by the downstream users). The pipelines and any storage vessels are heated and insulated, and are not open to the atmosphere which reduces atmospheric loss from this ES. The vessel and tanker insulation has the dual function of maintaining temperature and preventing worker exposure and release to the environment.

Any small losses of gas from vessels and tankers (from venting for example) can be passed through catalytic incinerators or aqueous scrubbers to remove any phthalic anhydride from the waste gas. Tanker connecting and disconnecting (loading, unloading and reloading) generally takes place in the open air. Respiratory equipment and protective clothing are worn when connecting and disconnecting tankers. Gas displacement lines are also used if filling of road tankers takes place under cover. In the EU 95% of operations take place using the molten form with use of the flaked form only constituting 5%.

Flaking machines and systems are enclosed, with LEV equipment to prevent exposure to dusts from the flaked form. In some cases exhausts loss from the LEV may be fed back to the molten stream, scrubbed or incinerated. LEV would generally function in the same way for mixing, reloading and refilling of containers with the flake. The nature of the phthalic anhydride dictates that high-integrity closed systems are used throughout.

Operational conditions related to frequency, duration and amount of use

Table	33: Duration	on, frequency	y and amounts
-------	--------------	---------------	---------------

Information type	Data field	Explanation
Use amount per worker [workplace] per day	No data	Worker exposure considered to be negligible for the molten form as it remains enclosed due to the high temperatures. Worker exposure considered to be negligible for the flake form as flakes are produced in closed systems
Duration per day at workplace [for one worker]	8hr/d	Standard number of hours in one work day
Frequency at workplace [for one	220 d/year	Standard number of work days /

Information type	Data field	Explanation
worker]		year
Other determinants related to duration, frequency and amount of use	Intermittent contact is expected	These tasks rarely take a full 8hr / day so worst case is assumed.
Annual amount used per site	47,500 t/y	Worst case European production site
Emission days per site	360 d/y	Estimate number of emission days, based on continuous production

Remarks or additional information:

Note that there is no professional or consumer use of phthalic anhydride. Note also that phthalic anhydride is not incorporated in any article.

Operational conditions related to product characteristics

Table 34: Product Characteristic

Information type	Data field	Explanation
Type of product the information relates to	Substance as such	The product can be sold in the form of flakes or alternatively in liquid form in a sealed tank container.
Physical state of product	Flakes or liquid melt	In the EU, approximately 5% of production is in the flaked form.
For solids: Flaked form	Low dustiness	Considered low due to flake size.
Concentration of substance in product	>99.8 %	

Remarks or additional information:

Production and handling of molten phthalic anhydride involves high temperatures, and high integrity contained systems with little or no potential for exposure. Pipelines and vessels are sealed and insulated. Workers involved in production work in a control room, with no direct contact to the installations housing the material. Workers involved in sampling and transfer of materials to road tankers are trained in the procedures and protective equipment is intended to cope with the worst case scenario, in order to minimise exposure and risks.

Other operational conditions of use

Table 35: Respiration volume and skin contact under conditions of worker uses

Information type	Data field	Explanation
Respiration volume under conditions of use	10m³/d	Default value for a worker breathing for a 8hrs work day in RIP 3.2
Skin contact area with the substance under conditions of use	480cm ²	Assumes 2 hands and face only (ECETOC TRA tool)

Table 36: Conditions leading to dilution of initial release related to human health

Information type	Data field	Explanation
Room size and ventilation rate	NA	Not relevant as workers involved in production work in a control room,
		with no direct contact to the installations housing the material

Table 37: Conditions leading to dilution of initial release related to environment

Information type	Data field	Explanation
Discharge volume of sewage treatment plant	2000 m ³ /d	EUSES default value for standard local STP
Available river water volume to receive the emissions from a site	20,000 m ³ /d	Standard ERC flow rate leading to a 10 fold dilution in receiving waters.

Risk management measures

Risk management measures for industrial site

Risk management measures for indust		Evaluation
Information type	Data field	Explanation
Containment and local exhaust ventil	ation	
Containment plus good work practice required	Effectiveness: Unknown	Handling of molten phthalic anhydride involves high temperatures, and high integrity contained systems with little or no potential for exposure. Pipelines and vessels are sealed and insulated. Workers involved in production work in a control room, with no direct contact to the installations housing the material. Handling of molten phthalic
Local exhaust ventilation is not required is not required to demonstrate a safe use but may be present depending on the design of the premises	Effectiveness : Unknown	anhydride involves high temperatures, and high integrity contained systems with little or no potential for exposure. Pipelines and vessels are sealed and insulated. Workers involved in production work in a control room, with no direct contact to the installations housing the material.
Personal protective equipment (PPE)		
Type of PPE (gloves, respirator, face-shield etc)	Effectiveness: Unknown	Handling of molten phthalic anhydride involves high temperatures, and high integrity contained systems with little or no potential for exposure. Pipelines and vessels are sealed and insulated. Workers involved in production work in a control room, with no direct contact to the installations housing the material. Workers involved in sampling and transfer of materials to road tankers are trained in the procedures and protective equipment is intended to cope with the worst case scenario, in order to minimise exposure and

Information type	Data field	Explanation
		risks.
Other risk management measures rel	ated to workers	
No further risk management measure	es required	
Risk management measures related t	o environmental emissions fror	n industrial sites
Onsite pre-treatment of waste water	Chemical pre-treatment or onsite STP.	Waste waters are generally treated on site by chemical and/or biological methods before release to the municipal STP or to the environment.
Resulting fraction of initially applied amount in waste water released from site to the external sewage system	Varies depending on system. Estimated concentration in the STP effluent is between 2 and 3mg/L based on worst case measured emissions.	Worst case measured releases for the phthalic anhydride life cycle are considered below and have been determined to be safe for the environment.
Air emission abatement	Effectiveness: Adequate measures in place	Exhaust gases absorbed in wet scrubbers or removed by incineration. Worst case measured emission values are considered below and are found to be safe for the environment. The emission to air is therefore considered to be negligible.
Resulting fraction of applied amount in waste gas released to environment	43.2 kg/d	Worst case measured values before scrubbing. This value has been inputted into the environmental risk assessment and is determined to be safe for the environment. As such the actual release levels after scrubbing or incineration will pose no threat to the environment.
Onsite waste treatment	Effectiveness: 87.3%	Simpletreat within EUSES assumes 87.3% removal in the STP system. This is considered to be conservative.
Effluent (of the waste water	2000 m ³ /d	Default: 2 000 m ³ /d
treatment plant) discharge rate Recovery of sludge for agriculture or horticulture	None	Default: 2.000 m ³ /d All sludge is collected and incinerated or sent to landfill.
Resulting fraction of initially applied amount in waste water released from site	12.6%	Simpletreat within EUSES assumes 12.6% emission in effluent from the STP system. This is considered to be overestimated.

Waste related measures

Table 38: Fractions of substance in waste and waste management measures

Information type	Data field	Explanation
Amount of substances in waste		·
water resulting from identified uses		Based on worst case emission
covered in the exposure scenario	40 kg/d	to waste waters identified.
Amount of substances in waste		
resulting from service life of articles	Not applicable	
Type of waste, suitable waste codes	Suitable EWC code(s)	
Type of external treatment aiming at		
recycling or recovery of substances	None	
Type of external treatment aiming at		
final disposal of the waste	Incineration or landfill.	
Fraction of substance released into		
the environment via air from waste		
handling	Not applicable	
Fraction of substance released into		
the environment via waste water		
from waste handling	Not applicable	
Fraction of substance disposed of		
as secondary waste	Not applicable	
L	U	l .

Exposure estimation

Workers exposure

Note that there is no EU Workplace Exposure Limit for phthalic anhydride, nor has the German DFG recommended a MAC. Switzerland has established a shift value of 1 mg/m³ and a short-time (15 minutes) value of 1 mg/m³. France has an 8-hour VLEP of 10 mg/Nm³. The present CSR recommends a long-term inhalation DNEL for workers of 32.2 mg/m³ and a dermal DNEL of 10 mg/kg bw/day.

The manufacturers have stated that workers involved in the handling of phthalic anhydride are protected by the nature of the installations; use of strictly controlled procedures and sealed pipelines and reactors. Workers perform the same activities throughout the shift. As such, there are no peak exposure points other than connecting and disconnecting tankers, and sampling. Protective clothing and respiratory equipment are required when connecting/disconnecting tankers, when taking samples and (in combination with a fume cupboard) when analysing samples. Acute/Short term exposure

Not relevant based on the hazard assessment and therefore will not be assessed.

Long-term exposure

Table 137 shows the estimated exposure concentration to workers. The exposure estimates were generated using the ECETOC TRA model using the parameters listed below:

Table 39: Parameters used in ECETOC modelling

	Value used	Explanation/source of data
Molecular weight	148.1156 g/mol	
Vapour Pressure	0.06 Pa	
Water solubility	11200 mg/L	
Partition coefficient octanol-	logKow = 1.6	
water		
Biodegradability	Readily biodegradable	

Is the substance a solid?	No/Yes	No in case of molten. Yes in case
		of flake
Dustiness during process	Low	Only in the case of solid
Duration of activity	>4 hours (default)	
Use of ventilation	Indoors without LEV (for PROC 1).	
	Indoors with LEV for other PROCs	

Table 40: Long-term exposure concentrations to workers from molten liquid

	PROC	Estimated Exposure Concentrations		
Routes of exposure		value	unit	
Noutes of exposure	PROC 1	0.343	mg/kg/da y	
	PROC 2	0.137	mg/kg/da y	
	PROC 3	0.0343	mg/kg/da y	
Dermal exposure	PROC 4	0.686	mg/kg/da y	
	PROC 5	0.0686	mg/kg/da y	
	PROC 8b	0.686	mg/kg/da y	
	PROC 9	0.68	mg/kg/da y	
	PROC 1	0.617	mg/m3	
	PROC 2	0.617	mg/m3	
	PROC 3	0.617	mg/m3	
	PROC 4	0.617	mg/m3	
Inhalation exposure	PROC 5	0.617	mg/m3	
	PROC 8b	0.617	mg/m3	
	PROC 9	0.617	mg/m3	

Table 41: Long-term exposure concentrations to workers from flakes

	PROC	Estimated Exposure Concentrations	
Routes of exposure		value	unit
	PROC 1	0.0343	mg/kg/day
	PROC 2	0.137	mg/kg/day
	PROC 3	0.0343	mg/kg/day
Dermal exposure	PROC 4	0.686	mg/kg/day
	PROC 5	0.068	mg/kg/day
	PROC 8b	0.686	mg/kg/day
	PROC 9	0.686	mg/kg/day
Inhalation ovnocuro	PROC 1	0.01	mg/m3
Inhalation exposure	PROC 2	0.001	mg/m3

	PROC	Estimated Exposure Concentrations	
Routes of exposure		value	unit
	PROC 3	0.01	mg/m3
	PROC 4	0.05	mg/m3
	PROC 5	0.05	mg/m3
	PROC 8b	0.005	mg/m3
	PROC 9	0.01	mg/m3

Consumer exposure

Consumers are not exposed to phthalic anhydride during the production process of ES4.

Indirect exposure of humans via the environment (oral)

Environmental releases are shown to be minimal (see below). Phthalic anhydride is readily biodegradable in atmospheric, aquatic and soil compartments, and does not bioaccumulate. Removal by STP is effective and atmospheric emissions are controlled by scrubbing and/or incineration. Therefore it is considered unlikely that humans will be exposed indirectly either by way of direct contact with the air, surface waters or soils, or by way of drinking water, or through exposure in the food chain.

Environmental exposure

The environmental releases for this use are determined primarily by tonnage and the ERC in the first tier with conservative estimations and defaults being implemented in EUSES 2.1. For the second tier assessment in EUSES refined inputs are chosen to best suit the description of the use as an intermediate of Phthalic Anhydride. Emission defaults are those specified by the ECHA "Guidance on information requirements and chemical safety assessment: Chapter R.16: Environmental Exposure Estimation". Regional data and emission fractions were calculated using EUSES. Full EUSES inputs are shown below. It is considered that the use of ERC 2 to estimate emissions to the environment from the intermediate use of phthalic anhydride will result in an unrealistically overestimated assessment for formulation, mixture, refilling and reloading of phthalic anhydride. This is because the default emissions fractions in ERC 2 represent a worst case and do not take into account the efficiency of the waste water treatment, sludge removal or atmospheric RMMs. The waste reduction processes for phthalic anhydride however are highly efficient. In further higher tier modelling, the worst case known concentrations of the phthalic anhydride in waste water and waste gas are used to refine the PECs. For ES4 ERC 2 was used to determine environmental emissions.

Table 42: EUSES inputs

14516 121 20020 III pats	1	1	
Input parameter:	Value:	Unit:	ERC default (if applicable)
Molecular Weight	148.1156	g/mol	
Vapour Pressure	0.0006	hPa	
Water Solubility	11,200 (average of range)	mg/L	
Octanol/water partition coefficient	1.60	logKow	
Кос	10.84 (estimated)		
Biodegradability	Readily Biodegradable		
Life Cycle Step	Production		
Tonnage (regional)	475,000	Tonnes	
Environmental	ERC2		
Release Class			
Fraction of Tonnage			1

Input parameter:	Value:	Unit:	ERC default (if applicable)
for Region			
Fraction of the main local source	0.1		This value has been chosen as a conservative overestimate of the local scale tonnage at a worst case facility. In reality the actual on site tonnages will be less in any single site. Company information has indicated that this value leads to a local tonnage which is higher (and therefore representative) than any actual site.
STP			Yes
Emission events per year	360 (tier 2 value)	Days	300
Default Release to Air	ERC 2: 2.5	%	ERC 2: 2.5
Default Release to Water	ERC 2: 2	%	ERC 2: 2
Dilution factor applied for PEC derivation			10 (20,000 m ³ /d)

For the tier 1 assessment of environmental releases the release estimation was based on the tonnage data and the ERC defaults. However the initial first tier calculations were not considered to give a reasonable assessment of the actual emission levels (and were not considered sufficient to demonstrate safe use), and so a tier 2 assessment has been carried out. In order to avoid confusion and to avoid the presentation of multiple tiers of data the first tier calculations which were carried out for ES4 are not presented below. For the tier 2 assessment of environmental releases the effects of several RMMs have been investigated alongside the worst case measure values obtained from consortium members to cover the uses of phthalic anhydride. For ES4 the RMMs and measured values taken into account are listed below. The worst case measured emission value to water and the atmosphere covers all facilities over all ESs for phthalic anhydride. As this emission concentration is obtained from a facility which carries out several processes using phthalic anhydride (and several ESs) it was not possible to define the individual contribution of this emission for each ES. As such the measured value actually takes into account worst case emission levels for several processes (production and intermediate use for example) and as such should be considered to be a worst case assumption which is applicable for all industrial exposure scenarios.

For the tier 2 assessment of environmental releases the effects of several RMMs have been investigated alongside the worst case measure values obtained from consortium members to cover the production uses of phthalic anhydride. For ES4 the RMMs and measured values taken into account are listed below. Table 43: RMMs and measured values for ES4 tier 2 assessment.

Description of RMM	Details	Effect taken into account in EUSES	Comments
Measured loss to waste water	20 mg/L	Lowering of concentration in STP effluent to	Worst case measured emission value.

Description of RMM	Details	Effect taken into account in EUSES	Comments
		2.53 mg/L	
Emission and production days	360 emission days per year	Increase emission days by 20%.	Continuous intermediate use
Sludge removal	Sludge removed to landfill or incinerated.	Concentration in soil due to sludge spreading set to 0.	No contamination of grassland or agricultural soil.
Measured stack gas emissions	Atmospheric losses of 1.8kg/hour.	Emission to the air of 43.2 kg/day.	Worst case emissions prior to scrubbing or incineration. Thus actual emissions to the environment will be even lower. This emission value covers all facilities over all ESs for phthalic anhydride as it is worst case for all facilities considered.

Table 44 Predicted Releases to the Environment Tier 2

ERC	Compartments	Predicted releases	Measured release	Explanation / source of measured data
	Release to water	40 kg/d	-	Predicted values are those calculated by EUSES using the worst case measured emissions in waste water.
2	Release to air	43.2 kg/d	-	Predicted values are those calculated by EUSES using the worst case measured emissions to the atmosphere before scrubbing or incineration.
	Soil (direct only) Agricultural soil O kd/d -		-	No directly loss to soil is expected for this ERC and no sludge spreading.

^{*}The predicted releases were estimated using the EUSES 2.1 program.

Exposure concentration in sewage treatment plants (STP)

On contact with water, phthalic anhydride is converted to phthalic acid. Therefore the PEC values presented are essentially those for phthalic acid. As the two substances are considered to be suitable for read across purposes, the PECs and PNECs can be considered equivalent. Phthalic anhydride is produced on a large scale, generally on major chemical sites, with dedicated effluent treatment facilities, involving both

chemical and biological treatment, coping with many chemical substances. Biodegradation and microbiological toxicity tests have shown that phthalic anhydride (or phthalic acid) is not toxic to microorganisms and is biodegradable. Disposal of sewage sludge is either by controlled high temperature incineration or to landfill. The model appears to predict 87% removal by STP. However actual measured data indicate at least 99.5% removal by STP and the assumptions used in assessing waste removal levels are therefore worst case.

Table 45: Tier 2 Concentrations in sewage

ERC	ERC for Compartme nt:	Estimated exposure concentrations		Measured exposure concentrations*		Explanation / source of measured data
		value	unit	value	unit	
	Waste water before treatment		mg/ L	20	mg/L	Measured worst case data from consortium members
2	Sewage (STP effluent)	2.53	mg/ L		mg/L	
	Sludge	51.8	mg/ kg			
	Local freshwater	0.253	mg/ L		mg/L	10-fold dilution by receiving waters

Table 46: Conservative emission fractions from the STP

Fraction description	Fraction amount	
	value	unit
Fraction of emission directed to air by STP	0.000138	%
Fraction of emission directed to water by STP	12.6	%
Fraction of emission directed to sludge by STP	0.0102	%
Fraction of emission degraded by STP	87.3	%

Exposure concentration in the aquatic pelagic compartment

Table 47: Tier 2 Local Concentrations in aquatic pelagic compartment

ERC	Compartments	PEC aquatic (local	Justification
		mg/L)	
	Freshwater (in mg/l)	0.253	
	Marine water (in mg/l)	0.0253	10-fold dilution by
2			receiving waters
	Intermittent releases to water (in	Not relevant	
	mg/l)		

Table 48: Tier 2 Predicted Exposure Concentrations (PEC) in aquatic pelagic compartment

ERC	Compartments	PEC aquatic (local	Justification
		mg/L)	
	Freshwater (in mg/l)	0.254	

	Marine water (in mg/l)	0.0258	10-fold dilution by
2			receiving waters
	Intermittent releases to water (in	Not relevant	
	mg/l)		

Exposure concentration in sediments

Phthalic anhydride (phthalic acid) has been measured in receiving waters at levels <0.1 mg/L (with one measured emission at less than 0.025mg/L). It is biodegradable, and it can be anticipated that it will be degraded either in the water column, or in the upper aerobic layers of any sediment. Phthalic anhydride and its hydrolysis product phthalic acid have a log K_{ow} of 1.6 and 0.73, respectively. These values indicate that both substances have a low adsorption potential on sediments (see 7.1). The weight of evidence strongly indicates that phthalic acid will not accumulate in sediments. Nevertheless PECsediment values as calculated by EUSES are presented below. The tier 2 predicted environmental concentrations in sediment are extremely low and suggest that the risk to sediment dwelling organisms from use of Phthalic Anhydride during formulation, refilling, reloading and mixing is negligible.

Table 49: Tier 2 Local Concentrations in aquatic sediment compartment

ERC	Compartments	Concentration
	Freshwater sediment (in mg/kg wwt)	0.26
2	Marine sediment (in mg/kg wwt)	0.0253

Table 50: Tier 2 Predicted Exposure Concentrations (PEC) in aquatic sediment compartment

ERC	Compartments	Concentration
	Freshwater sediment (in mg/kg wwt)	0.258
2	Marine sediment (in mg/kg wwt)	0.0258

These predictions do not take into account the biodegradable nature of phthalic acid, and should therefore be regarded as worst-case.

Exposure concentrations in soil and groundwater

There is no direct disposal of sewage sludge to soil, as disposal of sewage sludge is either by controlled high temperature incineration or to landfill. Therefore there is no direct exposure to soil or groundwater. Emissions to air are negligible, and therefore indirect emissions to soil (and groundwater) via atmospheric deposition are also negligible. Any phthalic anhydride in the atmosphere will be converted to phthalic acid on contact with atmospheric moisture, and any phthalic acid in rainfall will degrade rapidly on contact with soil. Nonetheless calculated PECs for soil and groundwater are presented below.

Table 51: Tier 2 Local Concentrations in the soil and groundwater compartment

ERC	Compartments	Concentration
2	Agricultural soil (averaged over 30 days (in mg/kg)	0.0539
	Groundwater (in mg/l)	0.062

Table 52: Tier 2 Predicted Exposure Concentrations (PEC) in the soil and groundwater compartment

ERC	Compartments	Concentration
2	Agricultural soil (averaged over 30 days (in	0.0558
2	mg/kg)	0.003
	Groundwater (in mg/l)	0.062

These predicted values should be assessed in the light of the above statement on sewage sludge, and the information on atmospheric compartment below.

Atmospheric compartment

As noted previously, emissions to the atmosphere are controlled by either aqueous scrubbers, in which all phthalic anhydride is converted to the soluble phthalic acid, cloth filters or incineration. Removal rates in both cases show an efficiency of >98%.

For the atmospheric compartment the Tier 1 predictions assume 2.5% of formulated substance is released to atmosphere, which for a plant formulating 50,000 tpa is 1,250 tpa, or approximately 3.5 tonnes per day, this is highly unrealistic. Tier 2 concentrations are thus based on the worst case measured stack emissions before gas treatment and are therefore worst case. Tier1 and Tier 2 local concentrations and PECs for air are shown below.

Table 53: Tier 2 local concentrations in air

ERC		Estimated local exposure concentrations	Explanation / source of data
	During emission (mg/m3)	0.012	Estimated using EUSES 2.1
2	Annual average (mg/m3)	0.0118	Estimated using EUSES 2.1
	Annual deposition (mg/m²/d)	0.0214	Estimated using EUSES 2.1

Table 54: Tier 2 Predicted Exposure Concentration (PEC) in air

ERC		Local concentration	PEC air (local+regional)	Justification
2	Annual average PEC in air, total (mg/m3)	0.012	0.012	Estimated using EUSES 2.1.

Exposure concentration relevant for the food chain (Secondary poisoning)

Phthalic anhydride is readily biodegradable in atmospheric, aquatic and soil compartments, and does not bioaccumulate. Removal by STP is effective. Therefore it is considered unlikely that humans will be exposed indirectly either by way of direct contact with the air, surface waters or soils, or by way of drinking water, or through exposure in the food chain.

Regional exposure levels and environmental concentrations.

Phthalic anhydride may be produced at several sites throughout a region and this may lead to a degree of regional exposure. Regional exposure has been modelled for the production of Phthalic anhydride using the

regional module of EUSES 2.1. No significant PEC values are indicated for the regional scale even under the conservative assumptions of the Tier 2 EUSES assessment.

Table 55: Regional concentrations in the environment

ERC2	Predicted regio Concentrations	•	Measured regional exposure concentrations		Explanation / source of
	PEC value	unit	Measured value	unit	measured data
Freshwater	0.0006	mg/l	NA	mg/l	
Marine water	7.6 x 10 ⁻⁶	mg/l	NA	mg/l	
Freshwater sediments	0.00057	mg/kg	NA	mg/kg	
Marine sediments	6.88 x 10 ⁻⁶	mg/kg	NA	mg/kg	
Agricultural soil	0.0009	mg/kg	NA	mg/kg	
Grassland	0.0019	mg/kg	NA	mg/kg	
Air	7.2 x 10 ⁻⁷	mg/m ³	NA	mg/m³	

Use of phthalic anhydride as a laboratory chemical

Exposure scenario 5 concerns the small scale use of phthalic anhydride as a laboratory chemical. As the majority of laboratories involved would generally not use phthalic anhydride in the molten form (due to not having the specialised systems in place to deal with the molten form of phthalic anhydride) the solid (flaked form) use would generally be most prevalent in the laboratory. The amounts used on each site would generally be very small with less than 1kg per site. As such this exposure scenario can be considered to be wide dispersive with a large number of very small point sources (individual laboratories) throughout the EU being encompassed in this use.

As such the focus of this ES should be on the regional risk as specified by the ECHA "Guidance on information requirements and chemical safety assessment: Chapter R.16: Environmental Exposure Estimation".

As with previous exposure scenarios exposure to workers has been determined using ECETOC TRA and environmental exposure levels have been calculated in EUSES.

Exposure scenario

Short title of the exposure scenario: Use of phthalic anhydride as a laboratory chemical

Sector of Use:

SU22: Professional uses: Public domain (administration, education, entertainment, services, craftsmen)

Process Categories:

PROC15: Use as laboratory reagent

Product Categories:

PC21: Laboratory chemicals

Environmental Release Category:

ERC8A: Wide dispersive indoor use of processing aids in open systems ERC8B: Wide dispersive indoor use of reactive substances in open systems

Description of activities and processes covered in the exposure scenario

As the majority of laboratories involved would generally not use phthalic anhydride in the molten form (due to not having the specialised systems in place to deal with the molten form of phthalic anhydride) the solid (flaked form) use would generally be most prevalent in the laboratory. The amounts used on each site would generally be very small with less than 1kg per site. As such this exposure scenario can be considered to be wide dispersive with a large number of very small point sources (individual laboratories) throughout the EU being encompassed in this use. The uses of phthalic anhydride in small scale laboratories may be many and specialised however at some of the uses would be in chemical reactions similar to those described for intermediate and monomer use (for example the formations of alkyl resins). In addition to this phthalic anhydride is recognised as an important precursor in the preparation of phthalate esters and as a precursor for reagents used in organic synthesis.

During laboratory use exhaust gasses can be filtered and scrubbed; typically this would remove >99% of released phthalic anhydride. Laboratory workers involved in handing and use of phthalic anhydride are trained in the procedures and protective equipment is intended to cope with the worst case scenario, in order to minimise exposure and risks. Waste stream treatment may also be employed to reduce environmental exposure through the laboratories specialised waste treatment system which would be tailored to deal with generalised chemical waste.

Operational conditions related to frequency, duration and amount of use

Table 56: Duration, frequency and amounts

Information type	Data field	Explanation
Use amount per worker [workplace] per day	No data	Not specified due to wide range of uses
Duration per day at workplace [for one worker]	8hr/d	Standard number of hours in one work day
Frequency at workplace [for one worker]	220 d/year	Standard number of work days / year
Other determinants related to duration, frequency and amount of use	Intermittent contact is expected	These tasks rarely take a full 8hr / day so worst case is assumed.
Annual amount used per site	No data	Less than 1 Kg present per site at one time
Emission days per site	300 d/y	Estimate number of emission days, based on continuous production

Remarks or additional information:

Note that there is no consumer use of phthalic anhydride. Note also that phthalic anhydride is not incorporated in any article.

Operational conditions related to product characteristics

Table 57: Product Characteristic

Information type	Data field	Explanation
Type of product the information relates to	Substance as such	The solid flake form would be prevalent in the laboratory due to not having the specialised systems in place to deal with the molten form of phthalic anhydride
Physical state of product	Flakes	The solid flake form would be prevalent in the laboratory due to not having the specialised systems in place to deal with the molten form of phthalic anhydride
For solids: Flaked form	Low dustiness	Considered low due to flake size.
Concentration of substance in product	>99.8 %	

Remarks or additional information:

Laboratory workers involved in handing and use of phthalic anhydride are trained in the procedures and protective equipment is intended to cope with the worst case scenario, in order to minimise exposure and risks.

Other operational conditions of use

Table 58: Respiration volume and skin contact under conditions of worker uses

Information type	Data field	Explanation
Respiration volume under	10m ³ /d	Default value for a worker breathing
conditions of use	10111 / 0	for a 8hrs work day in RIP 3.2
Skin contact area with the	480cm ²	Assumes 2 hands and face only
substance under conditions of use	480cm	(ECETOC TRA tool)

Table 59: Conditions leading to dilution of initial release related to human health

Information type	Data field	Explanation
		This would vary between
Room size and ventilation rate	NA	laboratories. However there would
		be local exhaust ventilation (e.g.
		fumehoods)

Table 60: Conditions leading to dilution of initial release related to environment

Information type	Data field	Explanation
Discharge volume of sewage treatment plant	2000 m ³ /d	EUSES default value for standard local STP
Available river water volume to receive the emissions from a site	20,000 m ³ /d	Standard ERC flow rate leading to a 10 fold dilution in receiving waters.

Risk management measures

The uses of phthalic anhydride in small scale laboratories may be many and specialised however at some of the uses would be in chemical reactions similar to those described for intermediate and monomer use (for example the formations of alkyl resins). In addition to this phthalic anhydride is recognised as an important precursor in the preparation of phthalate esters and as a precursor for reagents used in organic synthesis. During laboratory use exhaust gasses can be filtered and scrubbed; typically this would remove >99% of released phthalic anhydride. Laboratory workers involved in handing and use of phthalic anhydride are trained in the procedures and protective equipment is intended to cope with the worst case scenario, in order to minimise exposure and risks. Waste stream treatment may also be employed to reduce environmental exposure through the laboratories specialised waste treatment system which would be tailored to deal with generalised chemical waste.

As noted previously, during laboratory use exhaust gasses can be filtered and scrubbed; typically this would remove >99% of released phthalic anhydride. Laboratory workers involved in handing and use of phthalic anhydride are trained in the procedures and protective equipment is intended to cope with the worst case scenario, in order to minimise exposure and risks. Waste stream treatment may also be employed to reduce environmental exposure through the laboratories specialised waste treatment system which would be tailored to deal with generalised chemical waste.

Note that there is no consumer use of phthalic anhydride. Note also that phthalic anhydride is not incorporated in any article. Due to the high temperatures required and the specialised machinery involved laboratory use would generally not involve the molten form.

For the details or exposure and relevant risk characterisation with regards to sensitization please refer to section 10.

With regards to environmental emissions there may be specialised waste treatment employed which could take the form of effluent/waste capture or on site STP facilities. If these systems are not in place the municipal STP is considered sufficient to deal with the limited small point source emissions from this wide dispersive use.

Table 61: Risk management measures for industrial site

Table 61: Risk management measures for industrial site					
Information type	Data field	Explanation			
Containment and local exhaust ventilation					
		Laboratory workers involved in handing and use of phthalic anhydride are trained in the			
Containment is not required to		procedures and protective			
demonstrate a safe use but may be		equipment is intended to cope			
present depending on the design of		with the worst case scenario, in			
the laboratories. Good work		order to minimise exposure and			
practice required	Effectiveness: Unknown	risks.			
		Laboratory workers involved in handing and use of phthalic anhydride are trained in the procedures and protective			
Local exhaust ventilation is not		equipment is intended to cope			
required to demonstrate a safe use		with the worst case scenario, in			
but may be present depending on		order to minimise exposure and			
the design of the laboratories.	Effectiveness : Unknown	risks.			
Personal protective equipment (PPE)					
Type of PPE (gloves, respirator,		Laboratory workers involved in handing and use of phthalic anhydride are trained in the procedures and protective equipment is intended to cope with the worst case scenario, in order to minimise exposure and			
face-shield etc)	Effectiveness: Unknown	risks.			
Other risk management measures rel	ated to workers				
No further risk management measure	es required				
Risk management measures related t	o environmental emissions from	m laboratories			
_		Laboratories may have on site waste treatment, however the quantities used in the laboratory are so small that this may not be			
Onsite pre-treatment of waste		required for phthalic anhydride			
water	Possible on-site treatment	use.			
Resulting fraction of initially applied amount in waste water released from site to the external sewage	Varies depending on system.	This will change depending on the use pattern in the laboratory concerned. The worst case			
system		assumed emissions have been			

Information type	Data field	Explanation
		considered in tier 1 and found to
		be safe.
Air emission abatement	Effectiveness: Adequate	
	measures in place	
		LEV (fume hoods) are generally in
		place in most laboratories.
Resulting fraction of applied		
amount in waste gas released to	88.3 kg/d	Worst case EUSES estimated value
environment		(as there is only <1kg on site for
		each laboratory this value is a vast
		overestimation.
		Simpletreat within EUSES assumes
		87.3% removal in the STP system.
		This is considered to be
		conservative and is applicable to
Onsite waste treatment	Effectiveness: 87.3%	the municipal STP and laboratory
		use.
Effluent (of the waste water	2	
treatment plant) discharge rate	2000 m ³ /d	Default: 2.000 m ³ /d
Recovery of sludge for agriculture		All sludge is collected and
or horticulture	None	incinerated or sent to landfill.
		Simpletreat within EUSES assumes
Resulting fraction of initially applied		12.6% emission in effluent from
amount in waste water released		the STP system. This is considered
from site	12.6%	to be overestimated.

Waste related measures

Table 62: Fractions of substance in waste and waste management measures

	and waste management measure	
Information type	Data field	Explanation
Amount of substances in waste		
water resulting from identified uses		Based on worst case
covered in the exposure scenario	88.3 kg/d	estimation in EUSES.
Amount of substances in waste		
resulting from service life of articles	Not applicable	
Type of waste, suitable waste codes	Suitable EWC code(s)	
Type of external treatment aiming		
at recycling or recovery of		
substances	None	
Type of external treatment aiming	Not required for phthalic	
at final disposal of the waste	anhydride as the risk is minimal.	
Fraction of substance released into		
the environment via air from waste		
handling	Not applicable	
Fraction of substance released into		
the environment via waste water		
from waste handling	Not applicable	
Fraction of substance disposed of		
as secondary waste	Not applicable	

Exposure estimation

Workers exposure

Note that there is no EU Workplace Exposure Limit for phthalic anhydride, nor has the German DFG recommended a MAC. Switzerland has established a shift value of 1 mg/m³ and a short-time (15 minutes) value of 1 mg/m³. France has an 8-hour VLEP of 10 mg/Nm³. The present CSR recommends a long-term inhalation DNEL for workers of 32.2 mg/m³ and a dermal DNEL of 10 mg/kg bw/day.

Laboratory workers involved in handing and use of phthalic anhydride are trained in the procedures and protective equipment is intended to cope with the worst case scenario, in order to minimise exposure and risks. It should be noted that the values given below quote the highest data presented by the several members of the Consortium, and therefore represent a worst-case.

Acute/Short term exposure

Not relevant based on the hazard assessment and therefore will not be assessed.

Long-term exposure

Table 161 shows the estimated exposure concentration to workers. The exposure estimates were generated using the ECETOC TRA model using the parameters listed below:

Table 63: Parameters used in ECETOC modelling

Table 65. Furameters asea in EGET 66 modelling				
	Value used	Explanation/source of data		
Molecular weight	148.1156 g/mol			
Vapour Pressure	0.06 Pa			
Water solubility	11200 mg/L			
Partition coefficient octanol-	logKow = 1.6			
water				
Biodegradability	Readily biodegradable			
Is the substance a solid?	No/Yes	No in case of molten. Yes in case		
		of flake		
Dustiness during process	Low	Only in the case of solid		
Duration of activity	>4 hours (default)			
Use of ventilation	Indoors without LEV (for PROC 1).			
	Indoors with LEV for other PROCs			

Table 64: Long-term exposure concentrations to workers from molten liquid

	PROC	Estimated Exposure Concentrations	
Routes of exposure		value	unit
Dermal exposure	PROC 15	0.0343	mg/kg/day
Inhalation exposure	PROC 15	0.617	mg/m3

Table 65: Long-term exposure concentrations to workers from flakes

	PROC	Estimated Exposure			
		Concentrations			
Routes of exposure		value	unit		
Dermal exposure	PROC 15	0.0343	mg/kg/day		
Inhalation exposure	PROC 15	0.01	mg/m3		

Consumer exposure

Consumers are not exposed to phthalic anhydride during the production process of ES5.

Indirect exposure of humans via the environment (oral)

Environmental releases are shown to be minimal (see below). Phthalic anhydride is readily biodegradable in atmospheric, aquatic and soil compartments, and does not bioaccumulate. Removal by STP is effective

and atmospheric emissions are controlled by scrubbing and/or incineration. Therefore it is considered unlikely that humans will be exposed indirectly either by way of direct contact with the air, surface waters or soils, or by way of drinking water, or through exposure in the food chain.

Environmental exposure

The environmental releases for laboratory use are determined primarily by tonnage and the ERC in as specified by the ECHA "Guidance on information requirements and chemical safety assessment: Chapter R.16: Environmental Exposure Estimation". Regional data and emission fractions were calculated using EUSES. Full EUSES inputs are shown below.

It is considered that though the use of ERC 8A and 8B to estimate emissions to the environment from the intermediate use of phthalic anhydride will result in an unrealistically overestimated assessment for phthalic anhydride safe use is nevertheless demonstrated. Given that the actual amount on site in any one laboratory is expected to be less than 1kg it can be seen that the assumptions of ERC 8A and 8B vastly overestimate the emissions. Despite this the first tier conservative assessment has demonstrated no risk and shows that laboratory use of phthalic anhydride poses no risk to the environment.

For ES5 (use as a laboratory chemical) ERC's number 8A and 8B were used to determine estimated environmental emissions. It is likely that laboratories which use phthalic anhydride will be spread across the European Region and will not be a considered a single point source.

As laboratory use is widespread with a large number of very small point sources the exact tonnage used is difficult to establish. However the amount present on each local source would be less than 1kg by definition. A worst case assumption based on wide dispersive use would be that there are 20 such small sites in a region, each using 5% of the regional tonnage. By default a region has 20000000 inhabitants. Each STP catchment has 10000. Therefore, there are 2000 STPs per region. Therefore assuming even distribution of the 20 laboratories (which is an assumption that fits with the wide dispersive nature of the use) it is unlikely that a single STP catchment will contain more than one laboratory and emissions can be determined on this basis. This is still very much a worst case assumption as the amount emitted by any single laboratory will still be vastly in excess of the 1kg which can be located on one site by definition of the ES.

Table 66: EUSES inputs

Input parameter:	Value:	Unit:	ERC default (if applicable)
Molecular Weight	148.1156	g/mol	
Vapour Pressure	0.0006	hPa	
Water Solubility	11,200 (average of range)	mg/L	
Octanol/water partition coefficient	1.60	logKow	
Koc	10.84 (estimated)		
Biodegradability	Readily Biodegradable		
Life Cycle Step	Production		
Tonnage	EU tonnage :5000	Tonnes	Regional tonnage based on the 10% rule.
	Regional tonnage:500		
Environmental Release Class	ERC 8A and 8B		
Fraction of Tonnage for Region			1
Fraction of the main local source	0.05		Based on 20 small point sources within each region.
STP			Yes
Emission events per year	300	Days	300 (based on wide dispersive use in laboratories)
Default Release to	ERC 8A: 100	%	ERC 8A: 100
Air	ERC 8B: 0.1		ERC 8B: 0.1
Default Release to	ERC 8A: 100	%	ERC 8A: 100
Water	ERC 8B: 2		ERC 8B:2
Dilution factor applied for PEC			25 x 10 ⁹ m ³ /a (wide dispersive use)

Input parameter:	Value:	Unit:	ERC default (if applicable)
derivation			
Estimated number of small point sources in Europe for local and regional assessment	200		Not specified (worst case assumption based on tonnage and on site amounts).

For the tier 1 assessment of environmental releases the release estimation was based on the tonnage data and the ERC defaults.

Table 67 Predicted Releases to the Environment Tier 1

ERC	Compartments	Predicted releases	Measured release	Explanation / source of measured data
	Release to water	88.3kg/d	-	Predicted values are those calculated by EUSES using the tonnage data and defaults for ERC8A.
8A	Release to air	88.3 kg/d	-	Predicted values are those calculated by EUSES using the tonnage data and defaults for ERC8A.
	Soil (direct only) Agricultural soil	0 kd/d	-	No directly loss to soil is expected for this ERC
	Release to water	1.67kg/d	-	Predicted values are those calculated by EUSES using the tonnage data and defaults for ERC8B.
8B	Release to air	0.083 kg/d	-	Predicted values are those calculated by EUSES using the tonnage data and defaults for ERC8B.
	Soil (direct only) Agricultural soil	0 kd/d	-	No directly loss to soil is expected for this ERC

^{*}The predicted releases were estimated using the EUSES 2.1 program.

Tier 2 assessment was not required.

Exposure concentration in sewage treatment plants (STP)

On contact with water, phthalic anhydride is converted to phthalic acid. Therefore the PEC values presented are essentially those for phthalic acid. As the two substances are considered to be suitable for read across purposes, the PECs and PNECs can be considered equivalent. Phthalic anhydride is produced on a large scale, generally on major chemical sites, with dedicated effluent treatment facilities, involving both chemical and biological treatment, coping with many chemical substances. Biodegradation and microbiological toxicity

tests have shown that phthalic anhydride (or phthalic acid) is not toxic to microorganisms and is biodegradable. Disposal of sewage sludge is either by controlled high temperature incineration or to landfill. The model appears to predict 87% removal by STP. However actual measured data indicate at least 99.5% removal by STP and the assumptions used in assessing waste removal levels are therefore worst case. Laboratory waste may be treated on site or sent to the municipal STP and the removal rates above cover both of these scenarios.

Table 68: Tier 1 Concentrations in sewage

ERC	ERC for Compartme nt:	Estimated exposure concentrations		Compartme concentrations exposure		Explanation / source of measured data	
		value	unit	value	unit		
	Waste water before treatment	34.7	mg/ L	-	mg/L		
8A	Sewage (STP effluent)	4.39	mg/ L		mg/L		
OA	Sludge	89.9	mg/k g				
	Local freshwater	0.0012	mg/ L		mg/L	Based on wide dispersive flow rate	
	Waste water before treatment	0.0833	mg/ L	-	mg/L		
OD	Sewage (STP effluent)	0.105	mg/ L		mg/L		
8B	Sludge	2.16	mg/k g				
	Local freshwater	0.00003	mg/ L		mg/L	Based on wide dispersive flow rate	

Table 69: Conservative emission fractions from the STP

Fraction description	Fraction amount	
	value	unit
Fraction of emission directed to air by STP	0.000138	%

Fraction description	Fraction amount		
	value	unit	
Fraction of emission directed to water by STP	12.6	%	
Fraction of emission directed to sludge by STP	0.0102	%	
Fraction of emission degraded by STP	87.3	%	

Exposure concentration in the aquatic pelagic compartment

Table 70: Tier 1 Local Concentrations in aquatic compartment

ERC	Compartments	PEC aquatic (local mg/L)	Justification
	Freshwater (in mg/l)	0.00128	
	Marine water (in mg/l)	0.00126	Wide dispersive dilution
8A	Intermittent releases to water (in mg/l)	Not relevant	
	Freshwater (in mg/l)	3.08 x 10 ⁻⁵	
	Marine water (in mg/l)	3.07 x 10 ⁻⁵	Wide dispersive dilution
8B	Intermittent releases to water (in mg/l)	Not relevant	

Table 71: Tier 1 Predicted Exposure Concentrations (PEC) in aquatic compartment

ERC	Compartments	PEC aquatic (local mg/L)	Justification
	Freshwater (in mg/l)	0.0016	
8A	Marine water (in mg/l)	0.0013	10-fold dilution by receiving waters
	Intermittent releases to water (in mg/l)	Not relevant	
	Freshwater (in mg/l)	3.86 x 10 ⁻⁵	
	Marine water (in mg/l)	2.56 x 10 ⁻⁵	Wide dispersive dilution
8B	Intermittent releases to water (in mg/l)	Not relevant	

Exposure concentration in sediments

Phthalic anhydride (phthalic acid) has been measured in receiving waters at levels **<0.1 mg/L**. It is biodegradable, and it can be anticipated that it will be degraded either in the water column, or in the upper aerobic layers of any sediment. Phthalic anhydride and its hydrolysis product phthalic acid have a log K_{ow} of 1.6 and 0.73, respectively. These values indicate that both substances have a low adsorption potential on sediments (see 7.1). The weight of evidence strongly indicates that phthalic acid will not accumulate in sediments. Nevertheless PECsediment values as calculated by EUSES are presented below. The tier 2 predicted environmental concentrations in sediment are extremely low and suggest that the risk to sediment dwelling organisms from use of Phthalic Anhydride in the laboratory is likely to be negligible.

Table 72: Tier 1 Local Concentrations in aquatic sediment compartment

ERC	Compartments	Concentration
	Freshwater sediment (in mg/kg wwt)	0.0016
8A	Marine sediment (in mg/kg wwt)	0.0013
	Freshwater sediment (in mg/kg wwt)	3.93 x 10 ⁻⁵
8B	Marine sediment (in mg/kg wwt)	3.16 x 10 ⁻⁵

Table 73: Tier 1 Predicted Exposure Concentrations (PEC) in aquatic sediment compartment

ERC	Compartments	Concentration
	Freshwater sediment (in mg/kg wwt)	0.0016
8A	Marine sediment (in mg/kg wwt)	0.0013
	Freshwater sediment (in mg/kg wwt)	3.93 x 10 ⁻⁵
8B	Marine sediment (in mg/kg wwt)	3.16 x 10 ⁻⁵

These predictions do not take into account the biodegradable nature of phthalic acid, and should therefore be regarded as worst-case.

Exposure concentrations in soil and groundwater

There is no direct disposal of phthalic anhydride to soil under the assumptions of this ERC. However as there may be emissions to the municipal STP emissions to soil via sludge spreading cannot be ruled out and are considered below in a worst case local assessment. Any phthalic anhydride in the atmosphere will be converted to phthalic acid on contact with atmospheric moisture, and any phthalic acid in rainfall will degrade

rapidly on contact with soil, however atmospheric deposition is also taken into account in the PEC derivation below. Nonetheless calculated PECs for soil and groundwater are presented below.

Table 74: Tier 1 Local Concentrations in the soil and groundwater compartment

ERC	Compartments	Concentration
8A	Agricultural soil (averaged over 30 days (in mg/kg)	0.0933
	Groundwater (in mg/l)	0.103
8B	Agricultural soil (averaged over 30 days (in mg/kg)	0.004
	Groundwater (in mg/l)	0.008

Table 75: Tier 1 Predicted Exposure Concentrations (PEC) in the soil and groundwater compartment

ERC	Compartments	Concentration
8A	Agricultural soil (averaged over 30 days (in mg/kg)	0.0952
	Groundwater (in mg/l)	0.103
8B	Agricultural soil (averaged over 30 days (in mg/kg)	0.004
	Groundwater (in mg/l)	0.008

These predicted values should be assessed in the light of the above statement on sewage sludge, and the information on atmospheric compartment below.

Atmospheric compartment

Depending on the size and scale of the laboratory there may be waste gas treatment or capture. However gas removal has not been taken into account here and the below PECs should be considered worst case.

Table 76: Tier 1 local concentrations in air

ERC		Estimated local exposure concentrations	Explanation / source of data
	During emission (mg/m3)	0.0193	Estimated using EUSES 2.1
8A	Annual average (mg/m3)	0.019	Estimated using EUSES 2.1

	Annual deposition (mg/m²/d)	0.0349	Estimated using EUSES 2.1
	During emission (mg/m3)	2.32 x 10 ⁻⁵	Estimated using EUSES 2.1
8B	Annual average (mg/m3)	1.9 x 10 ⁻⁵	Estimated using EUSES 2.1
	Annual deposition (mg/m²/d)	3.44 x 10 ⁻⁵	Estimated using EUSES 2.1

Table 77: Tier 1 Predicted Exposure Concentration (PEC) in air

ERC		Local concentration	PEC air (local+regional)	Justification
8A	Annual average PEC in air, total (mg/m3)	0.019	0.019	Estimated using EUSES 2.1.
8B	Annual average PEC in air, total (mg/m3)	1.9 x 10 ⁻⁵	1.9 x 10 ⁻⁵	Estimated using EUSES 2.1.

Exposure concentration relevant for the food chain (Secondary poisoning)

Phthalic anhydride is readily biodegradable in atmospheric, aquatic and soil compartments, and does not bioaccumulate. Removal by STP is effective. Therefore it is considered unlikely that humans will be exposed indirectly either by way of direct contact with the air, surface waters or soils, or by way of drinking water, or through exposure in the food chain.

Regional exposure levels and environmental concentrations.

Phthalic anhydride may be produced at several sites throughout a region and this may lead to a degree of regional exposure. Regional exposure has been modelled for the production of Phthalic anhydride using the regional module of EUSES 2.1. No significant PEC values are indicated for the regional scale even under the conservative assumptions of the Tier 2 EUSES assessment.

Table 78: Regional concentrations in the environment

ERC8A	Predicted regional Exposure Concentrations		Measured regional exposure concentrations		Explanatio n / source of
	PEC value	unit	Measured value	unit	measured data
Freshwater	0.000034	mg/l	NA	mg/l	
Marine water	3.7 x 10 ⁻⁶	mg/l	NA	mg/l	
Freshwater sediments	0.0003	mg/kg	NA	mg/kg	

ERC8A	Predicted regional Exposure Concentrations		Measured regional exposure concentrations		Explanatio n / source of
	PEC value	unit	Measured value	unit	measured data
Marine sediments	0.00037	mg/kg	NA	mg/kg	
Agricultural soil	0.0092	mg/kg	NA	mg/kg	
Grassland	0.0019	mg/kg	NA	mg/kg	
Air	7.21 x 10 ⁻⁷	mg/m ³	NA	mg/m ³	

ERC8B	Predicted regional Exposure Concentrations		Measured regional exposure concentrations		Explanatio n / source of
	PEC value	unit	Measured value	unit	measured data
Freshwater	7.84 x 10 ⁻⁶	mg/l	NA	mg/l	
Marine water	3.26 x 10 ⁻⁷	mg/l	NA	mg/l	
Freshwater sediments	6.97 x 10 ⁻⁶	mg/kg	NA	mg/kg	
Marine sediments	2.93 x 10 ⁻⁷	mg/kg	NA	mg/kg	
Agricultural soil	8.78 x 10 ⁻⁴	mg/kg	NA	mg/kg	
Grassland	1.89 x 10 ⁻³	mg/kg	NA	mg/kg	
Air	7.21 x 10 ⁻⁷	mg/m ³	NA	mg/m ³	

SAFETY DATA SHEET

PHTHALIC ANHYDRIDE

April 2013, Version 03 Page 75 of 75